Paleoecology of Turonian-Santonian on the basis of planktonic foraminifera in the type section of Surgah Formation, Kabir-kuh anticline, South of Ilam

Document Type : مقالات پژوهشی

Authors

1 Ferdowsi University of Mashhad

2 Shahid Beheshti University

Abstract

Introduction
Sediments of Turonian to Santonian age are located in Surgah formation and characterized by Shale and marly Shale. Surgah formation as one of the formations of Bangestan group against other formations this group has limited expansion so that it only outcrops in Lurestan subbasin. During the Cretaceous time, two warming cycles occurred, the first cycle is observed in the Lower cretaceous (Albian) and second cycle is observed in the Upper Cretaceous (Turonian-Santonian). (Lowenstam & Epstein, 1954; Bowen, 1961). Therefore, in this study has been attempted to investigate the influencing factors on the planktonic foraminifera ecology during the seconded cycle Turonian-Santonian.
 
Materials and methods
In this study, 168 samples were systematically collected during a Surgah formation. The samples include Shales and marly Shales. About 1 kg of each sample wase processed. The samples were dried, soaked in hydrogen peroxide (%10) for 12 hours. The mixture was washed over three sieves of 70, 100 and 120µm mesh to remove the clay fraction. This procedure was repeated several times when necessary. The residue was dried at 40˚ C. then, Foraminifera were identified and counted. At least 300 foraminifera were counted in each sample. The general taxonomy followes Robaszynski and Caron (1979), Caron (1985), Premoli Silva & Sliter (1999), Robaszynski et al. (2000), Premoli Silva & Verga (2007). Paleoecological indicators were obtained using the results of the counting process.
 
Discussion
A type section of Surgah Formation in Ilam Kabir-Kuh anticiline in order to Paleoecology of Turonian -Santonian was selected, sampled and precisely studied for stratigraphy and paleontology. This sequence with a thickness of 168 m is composed of shale and marlyshales with interla of marlylimestone. Lower and upper boundaries of the Surgah Formation with Sarvak and Ilam limestone Formations are conformable with sharp lithological boundary respectively. Three biostratigraphic zones are proposed for the Turoniane - Coniacian interval in Surgah formation:
1- Marginotruncana sigali - Dicarinella primitiva partial range Zone (latest middle (?) - late Turonian). Because the usual index species for this interval, Helvetoglobotruncana helvetica, has not been found at Surgah formation, therefore the base of this zone is not exposed in the this formation, then age of this zone is latest Middle (?) - late Turonian.
2- Dicarinella concavata Interval Zone (latest Turonian - earliest Santonian).
3- Dicarinella asymetrica Total Range Zone (Early Santonian - Campanian).
Because Dicarinell asymetrica has been found all over Surgah formation, the top of this zone is not exposed in the Surgah Formation, then age of this zone is latest Early Santonian. On this basis, generally the age of the Surgah formation latest Middle Turonian - latest Early Santonian is determined. The ratio between planktonic and benthonic foraminifera (P/B) is one of the most reliable proxies to estimate palaeo-water depths.It has been known for a long time that the percentage of planktonic foraminifera in modern sediments increases with water depth (e.g., Boltovskoy & Wright, 1976; van der Zwaan et al., 1999). Van der Zwaan et al. (1990) described the regression curves with a mathematical formula, which can be used to estimate the water depth. Planktonic foraminifera are divided into five groups according to morphology and lifestyle (Hart & Bailey (1979); Coccioni & Luciani (2005); Reolid et al. (2015):
1- Strongly keeled trocospiral: these forms are k- strategic and develop in conditions of reduced nutrients (oligotrophic - mesotrophic), increased oxygen and deep waters. Like geniuses: Dicarinella and Marginotruncana.
2- Weakly keeled trocospiral: these forms are k/r strategic and develop in conditions of oligotrophic - mesotrophic and increased oxygen. Like genus: Archaeoglobigerina.
3- Unkeeled trocospiral: these forms are r- strategic and develop in conditions of increased nutrients (mesotrophic - euotrophic), reduced oxygen and surface waters. Like geniuses: Whiteinella and Hedbergella.
4- Planispiral: these forms are r-strategic (opportunist) and develop in conditions of eutrophic, increased oxygen and surface to medium waters. Like genus: Macroglobigerinelloides.
5- Biserial: these forms are r-strategic (opportunist) and develop in conditions of rincreased nutrients (eutrophic), poorly oxygenated and surface to intermediate waters. Like genus: Heterohelix.
 
Conclusion
Sediments of Turonian-Santonian age are located in Surgah formation and characterized by Shale and marly Shale with 168 m thickness. Lower and upper boundaries of the Surgah Formation with Sarvak and Ilam limestone Formations are conformable with sharp lithological boundary respectively. Generally for the Turonian to Santonian in the Surgah Formation deep open marine (upper bathyal) with an average depth of 662 m was determined. At the base of the Surgah Formation, Late Turonian, the frequency of deep forms (H3) and percentage of planktonic foraminifera (%P) increased therfore suggests sea-level rise, also killed-forms and K-strategies increasment suggests a lack of nutrients and Oligotrophic condition, whereas decrease of non-killed forms indicates increasment of water salinity in this biozone. In the middle of the Surgah Formation. late Turonian-Coniacian to earliest Santonian, the percentage decrease of planktonic foraminifera (%P) and shallow forms (H1) increasment is indicated sea level gradually falling also none-keeling forms and r-strategies increasment offers abundance of nutrients , Euotrophic conditions, and relative decrease of water salinity. On top of the Surgah Formation, Early Santonian fluctuations in environmental conditions are observed.
 
Keywords: Surgah; Planktonic foraminifera; Benthonic; Turonian; Santonian; Oligotrophic; Eutrophic.
 
References
Bowen, R., 1961. Paleotemperature analyses of Mesozoic Belemnoidea from Germany and Poland. Journal of Geology, 69 (1): 75-83.
Coccioni, R., & Luciani, V., 2005. Planktonic foraminifers across the Bonarelli Event (OAE2, latest Cenomanian): The Italian record. Palaeogeography, Palaeoclimatology, Palaeoecology, 224: 167-185.
Caron, M., 1985. Cretaceous planktic foraminifera. In: Bolli, H.M., Saunders, J.B., & Perch Nielsen, K., (eds.), Plankton stratigraphy. Cambridge University Press, 17-86.
Hart, M.B., & Bailey, H.W., 1979. The distribution of planktonic Foraminiferida in the Mid-Cretaceous NW
Europe; Aspekte der Kreide Europas. International Union of Geological Sciences, 6: 527-542.
Premoli Silva, I., & Sliter, W.V., 1999. Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. Geological Society of America Special Paper, 332: 301-328.
Premoli Silva, I., & Verga, D., 2004. Practical manual of Cretaceous planktonic  foraminifera, course 3. In: Verga, D., & Rettri, R., (eds.), International school of planktonic foraminifera: Universities of Perugia and Milano. Tripografiadi di Pontefelcino, Perugia, Italy, 1-283.
Reolid, M., Sánchez-Quiñónez, C.A., Alegret, L., Molina, E., 2015. Palaeoenvironmental turnover across the Cenomanian-Turonian transition in Oued Bahloul, Tunisia: foraminifera and geochemical proxies. Cretaceous Research, 33: 196-204.
Robaszynski, F., & Caron, M., 1979. Atlas de foraminifers planctoniques du Cre´tace´ moyen (Mer Boreale et Tethys), premie`re partie. Cahiers de Micropaleontologie, 1-185.
Van der Zwaan, D.J., Jorissen, F.J., & de Stigter, H.C., 1990. The depth dependency of planktonic/benthic foraminiferal ratios: constraints and applications. Marine Geology, 95: 1-16.
Van der Zwaan, G.J., Duijnstee, I.A.P., den Dulk, M., Ernst, S.R., Jannink, N.T., & Kouwenhoven, T.J., 1999. Benthic foraminifers: proxies or problems? A review of paleocological concepts. Earth Science Reviews, 46: 213-236.

Keywords


آقانباتی، س. ع.، 1383. زمین‌شناسی ایران. انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور، 1ـ586.
منجزی، ن.، 1385. زیست ‌چینه ‌نگاری سازند سورگاه (مقطع تیپ) بر اساس فرامینیفرهای پلانکتونیک در جنوب شرق ایلام. پایان نامه کارشناسی ارشد، دانشگاه اصفهان.
Bandy, 0.L., & Arnal, R.E., 1960. Concepts of foraminifera1 paleoecology. American Association of Petroleum Geologists Bulletin, 44 (12): 1921-1932.
Bandy, 0.L., & Rodlfo, K.S., 1964. Distribution of foraminifera and sediments, Peru- Chile Trench area. Deep-Sea Research, 11 (5): 817- 837.
Bandy, 0.L., 1960 a. Planktonic foraminifera1 criteria for paleoclimatic zonation. Science Reports of the Tohoku University, 4: 1-8.
Bandy, 0.L., 1960 b. The geologic szgniJicance of coiling ratios in the foraminifer Globigerina pachyderma (Ehrenberg). Journal of Paleontology, 34 (4): 671-681.
Bandy, 0.L., 1964 a. Cenozoic planktonic foraminifera1 zonation. Micropaleontology, 10 (1): 1-17.
Bandy, 0.L., 1956. Ecology of foraminifera in northeastern Gulf of Mexico.U. S. Geological Survey Professional Paper, 274: 179-204.
Be, A.W.H., 1960. Ecology of Recent planktonic foraminifera: Part 2 - Bathymetric and seasonal Distributions in the Sargasso Sea of Bermuda. Micropaleontology, 6 (4): 373-392.
Be, A.W.H., & Ericson, D.B., 1963. Aspects of calcification in planktonic foraminifera (Sarcodina). Annals of the New York Academy of Sciences, 109: 65-81.
Bolli, H.M., 1957. The genera Praeglobotruncana, Globotruncana, Rotalipora Abathomphalus in the Upper Cretaceous of Trinidad, B.W.I.U.S. Natural History Museum Bulletin, 215: 51-60.
Boltovskoy, E., & Wright, R., 1976. Recent Foraminifera. Junk, The Hague, 1-515.
Bralower, T.J., Leckie, R.M., Sliter, W.V., & Thierstein, H.R., 1995. An integrated Cretaceous microfossil biostratigraphy. SEPM Special Publications, 54: 65-79.
Bowen, R., 1961. Paleotemperature analyses of Mesozoic Belemnoidea from Germany and Poland. Journal of Geology, 69 (1): 75-83.
Caron, M., 1985. Cretaceous planktic foraminifera. In: Bolli, H.M., Saunders, J.B., & Perch Nielsen, K., (eds.), Plankton stratigraphy. Cambridge University Press, 17-86.
Coccioni, R., & Luciani, V., 2005. Planktonic foraminifers across the Bonarelli Event (OAE2, latest Cenomanian): The Italian record. Palaeogeography, Palaeoclimatology, Palaeoecology, 224: 167-185.
Cushman, J.A., 1965. Upper Cretaceous Foraminifera of the Gulf Coastal Region of the United States and adjacent area. Geological Survey Professional, 1-241.
Fassell, M.L., & Bralower, T.J., 1999. Warm, equable mid-Cretaceous: stable isotope evidence. Geological Society of America, 332: 121-142.
Gibson, T.G., 1989. Planktonic/benthonic foraminiferal ratios: modern patterns and Tertiary Applicability. Marine Micropaleontology, 15: 29-52.
Hart, M.B., 1999. The evolution and biodiversity of Cretaceous planktonic foraminifera. Geobios, 32 (2): 247-255.
Hemleben, C., Spindler, M., & Anderson, O.R., 1989. Modern Planktonic Foraminifera. Springer Verlag, New York, 1-363.
Hart, M.B., & Bailey, H.W., 1979. The distribution of planktonic Foraminiferida in the Mid-Cretaceous NW
Europe; Aspekte der Kreide Europas. International Union of Geological Sciences, 6: 527-542.
Huber, B.T., Hodell, D.A., & Hamilton, C.P., 1995. Middle Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin, 107: 1164-1191.
Huber, B.T., Leckie, R.M., Norris, R.D., Bralower, T.J., & CoBabe, E., 1999. Foraminiferal assemblage and stable isotopic change across the CenomanianeTuronian boundary in the subtropical North Atlantic. Journal of Foraminiferal Research, 29: 392-417.
Jarvis, I., Carson, G.A., Cooper, M.K.E., Hart, M.B., Leary, P.N., Tocher, B.A., Horne, D., & Rosenfeld, A., 1988. Microfossil assemblages and the Cenomaniane-Turonian (Late Cretaceous) Oceanic Anoxic Event. Cretaceous Research, 9: 3-103.
Koutsoukos, E.A.M., & Hart, M.B., 1990. Cretaceous foraminiferal morphogroup distribution patterns, palaeocommunities and trophic structures: a case study from the Sergipe Basin, Brazil. Transactions of the Royal, Society of Edinburgh. Earth Sciences, 81: 221-246.
Keller, G., & Pardo, A., 2004. Paleoecology of the Cenomanian-Turonian Stratotype Section (GSSP) at Pueblo, Colorado. Marine Micropleontology, 51: 95-128.
Leckie, R.M., Yuretich, R.F., West, O.L.O., Finkelstein, D., & Schmidt, M., 1998. Paleoceanography of the southwestern Western Interior Sea during the time of the Cenomaniane-Turonian boundary (Late Cretaceous). SEPM Concepts in Sedimentology and Paleontology, 6: 101-126.
Loeblich, A.R.Jr., & Tappan, E., 1988. Forminiferal genera & their classification. Van Nostrand Reinhold Campany, New York, 1-970.
Lowenstam, H.A., & Epstein, S., 1954. Paleotemperatures of the post-Aptian Cretaceous as determined by the oxygen isotope method. Journal of Geology, 62 (3): 207-248.
Pierre, Ch., 1999. The carbon and oxygen isotope distribution in the Mediterranean water masses. Marine Geology, 153: 41-55
Phleger, F.B., 1960. Ecology and distribution of recent foraminifera. Baltimore: Johns Hopkins Press, 1-297.
Postuma, J.A., 1971. Manual of Planktonic Foraminifera. Elsevier, 1-420.
Premoli Silva, I., & Sliter, W.V., 1999. Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. Geological Society of America Special Paper, 332: 301-328.
Premoli Silva, I., & Verga, D., 2004. Practical manual of Cretaceous planktonic foraminifera, course 3. In: Verga, D., & Rettri, R., (eds.), International school of planktonic foraminifera: Universities of Perugia and Milano. Tripografiadi di Pontefelcino, Perugia, Italy, 1-283.
Reolid, M., Sanchez-Quiñonez, C.A., Alegret, L., Molina, E., 2015. Palaeoenvironmental turnover across the Cenomanian-Turonian transition in Oued Bahloul, Tunisia: foraminifera and geochemical proxies. Cretaceous Research, 33: 196-204.
Robaszynski, F., & Caron, M., 1979. Atlas de foraminife`rs planctoniques du Cre´tace´ moyen (Mer Boreale et Tethys), premie`re partie. Cahiers de Micropaleontologie, 1-185.
Segerstrale, S.G., 1957. Baltic Sea. In: Hedgpeth, J.W., (ed.), Treatise on marine ecology and paleoecology. Geological Society of America Memoir, 1 (Ecology): 751-800.
Sliter, W.V., 1989. Biostratigraphic zonation for Cretaceous planktonic foraminifera examinied in thin section. Journal of Foraminiferal Research, 1: 1-19.
Sverdrup, H., Johnson, M.W., & Fleming, R.H., 1942. The Oceans, The Oceans, Their Physics, Chemistry, and General Biology. New York: Prentice-Hall, 1-1087.
Urey, H.C., Lowenstam, H.A., Epstein, S., & McKinney, C.R., 1951. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the Southeastern United States. Bulletin of the Geological Society of America, 62: 399-416.
Van der Zwaan, D.J., Jorissen, F.J., & de Stigter, H.C., 1990. The depth dependency of planktonic/benthic foraminiferal ratios: constraints and applications. Marine Geology, 95: 1-16.
Van der Zwaan, G.J., Duijnstee, I.A.P., den Dulk, M., Ernst, S.R., Jannink, N.T., & Kouwenhoven, T.J., 1999. Benthic foraminifers: proxies or problems? A review of paleocological concepts. Earth Science Reviews, 46: 213-236.
Wolff, T., Grieger, B., Hale, W., Du¨rkoop, A., Mulitza, S., Pa¨tzold, J., & Wefer, G., 1999. On the reconstruction of Paleosalinites. In: Fischer, G., & Wefer, G., (eds.), Use of Proxies in paleoceanography: examples from the South Atlantic. Springer-Verlag, Berlin, 207-228.
Wynd, J.G., 1965. Biofacies of the Iranian oil consortium agreement area. IOOC report, No, 1028. (unpublished)
Zepeda, M.A., 1998. planktic foraminifera diversity, equitability & biostratigraphy of the uppermost Campanian-Maastrichtian, ODP Leg122, Hole 762, Exmoth plateau, NW Australia,eastern Indian Ocean. Cretaceous Reaserch, 19: 117-152.
CAPTCHA Image