تاریخچه رسوب‌گذاری و تکامل دیاژنزی نهشته‌های تبخیری سازند ساچون در برش تاقدیس سیاه، جنوب شرق سروستان

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه شهید بهشتی

چکیده

سازند ساچون (پالئوسن ـ ائوسن پیشین) در برش تاقدیس سیاه واقع در جنوب شرق سروستان، از 3 واحد سنگ‌شناسی تخریبی، مارن ـ کربناته و تبخیری تشکیل شده است. نتایج بررسی‌های واحد تبخیری به منظور شناسایی محیط رسوبی و تکامل دیاژنزی آن نشان می‌دهد که نمک‌های تبخیری این واحد به صورت سولفات‌کلسیم (ژیپس، بازانیت و انیدریت) بوده‌اند. تبخیری‌های سازند ساچون به صورت اولیه (نوع اول)، ثانویه (نوع دوم) و نوع سوم تشکیل گردیده‌اند. تبخیری‌های اولیه شامل لامینه‌ها و لایه‌های ژیپس می‌باشند که در محیط زیرآبی کم‌عمق (سالینا) و بر اثر تبخیر نهشته شده‌اند. به همراه این رسوبات، میان لایه‌هایی از کربنات‌های محیط لاگونی و سبخایی نیز حضور دارند. تبخیری‌های ثانویه در مراحل دیاژنزی ائوژنز و مزوژنز تشکیل شده‌اند. در مرحله ائوژنز نودول‌های سولفاته با ساخت‌های توری قفس‌مرغی و اینترولیتیکی به صورت جای‌گیری در رسوبات زمینه کربناته ـ مارنی محیط سبخایی رشد کرده‌اند. با تدفین تبخیری‌های اولیه و وارد شدن آن‌ها به مرحله مزوژنز، این رسوبات بر اثر افزایش دما و فشار تحت تأثیر فرآیندهای دیاژنزی انیدریت‌زایی و فشردگی قرار گرفتند. تبخیری‌های نوع سوم یا تبخیری‌های مرحله تلوژنز با رخنمون یافتن تبخیری‌های اولیه و ثانویه، در محیط دیاژنزی متئوریک به وجود آمده‌اند. محصولات دیاژنزی این مرحله شامل آب‌گیری انیدریت و تشکیل کانی نیمه هیدراته بازانیت، ژیپس ثانویه با بافت‌های آلاباسترین، پورفیروبلاستیک، گرانوبلاستیک، تشکیل برش‌‌ها و شیارهای انحلالی، کلسیتی شدن و نیز گسترش رگه‌ها و پر شدن متعاقب آن‌ها با سیمان ژیپس ساتین‌اسپار و زیگمویدال می‌باشند.

کلیدواژه‌ها


مطیعی، ه. 1382. زمین شناسی ایران: چینه شناسی زاگرس. سازمان زمین‌شناسی و اکتشافات معدنی کشور، 536 ص.
Adabi, M.H., 2009. Multistage dolomitization of Upper Jurassic Mozduran Formation, Kope-Dagh Basin, NE Iran. Carbonates and Evaporites, 24: 1-19.
Alavi, M., 1994. Tectonic of zagros orogenic belt of Iran, new data and interpretions. Tectonophysics, 229: 211-238.
Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and proforland evolution. American Journal of Sciences, 304:1-20.
Alavi, M., 2007. Structure of the Zagros fold-thrust belt in Iran. American Journal of Science, 307: 1064-1095.
Al-Juboury, A.I., & McCann, T., 2008. The Middle Miocene Fatha (Lower Fars) Formation Iraq. GeoArabia, 13:141-174.
Alsharhan, A.S., & Kendall, G.St.C., 2003. Holocene coastal carbonates and evaporates of the southern Arabian Gulf and their ancient analogues. Earth Science Reviews, 61:191-243
Aqrawi, A.A.M., & Sadooni, F.N., 1987. Recent tidal flat sediments of Khor AI-Zubair, NW Arabian Gulf. Iraq Journal of Water Resources, 6:18-37.
Arzaghi, S., Khosrow-Tehrani, K., & Afghah, M., 2012. Sedimentology and petrography of Paleocene-Eocene evaporites: the Sachun Formation, Zagros Basin, Iran. Carbonates and Evaporites, 27: 43–53.
Babel, M., 2005a. Event stratigraphy of the Badenian selenite evaporites (Middle Miocene) of the northern Carpathian Foredeep. Acta Geologica Polonica, 55: 9-29.
Babel, M., 2005b. Selenite-gypsum microbialite facies and sedimentary evolution of the Badenian evaporate basin of the northern Carpathian Foredeep. Acta Geologica Polonica, 55:187-210.
Barchi, M.R., De Feyter, A., Magnani, M., Minelli, G., Pialli, G., & Sotera, B., 1998. The structural cycle of the Umbria-Marche fold and thrust belt. Memorie della Societa Geologica Italiana, 52:557-578.
Beales, F.W., & Oldershaw, A.E., 1969. Evaporite solution brecciation and Devonian carbonate reservoir porosity in western Canada. American Association of Petroleum Geologists Bulletin, 53: 503-512.
Benison, K.C., & Goldstein, R.H, 1999. "Permian paleoclimate data from fluid inclusions in halite". Chemical Geology, 154:113-132.
Boggs, S.J., 1995. Principles of Sedimentology and Stratigraphy. New Jersey, Prentice Hall, 774 p.
Cartwright, J.A., 1997. Polygonal extensional fault systems: a new class of structure formed during the early compaction of shales. In Fluid Flow and Transport in Rocks (eds B.Jamtveit & B.W.D.Yardley). London: Chapman & Hall., p.35-56.
Dean, W.E., Davies, G.R., & Anderson, R.Y., 1975. Sedimentological significance of nodular and laminated anhydrite. Geology, 33: 67-372.
De la Cueva, C., 1992. Analisis del contenido en agua en formaciones salinas. Su aplicaci_on al almacenamiento de residuos radioactivos. In:Unpublished, PhD thesis, Universitat de Barcelona, 175p.
Dunham, R.J., 1962. Classification of carbonate rocks according to their depositional texture, in W.E. Ham, ed., Classification of Carbonate Rocks: Tulsa, OK. American Association of Petroleum Geologists, Memoir.1:108-121.
Einsele, G., 2000. Sedimentary Basin, Evolution, Facies, and Sediment Budget. Springer-Verlag Berline Heidelberg, 792 p.
El Tabakh, M., Schreiber, B.C., & Warren, J.K., 1998. Origin of fibrous gypsum in the Newark Rift Basin, Eastern North America. Journal of Sedimentary Research, 68:88-9.
El-Tabakh, M., Mory, A., Schreiber, B.C., & Yasin, R., 2004. Anhydrite cement after dolomitization of shallow marine Silurian carbonate of the Gascoyne Platform, Southern Carnnarvon Basin, Western Australia. Sedimentary Geology, 164:75-87.
Flugel, E., 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer Verlag, New York, 996 p.
Garcia-Ruiz, J.M., Villasuso, R., Ayora, C., Canals, A., & Otalora, F., 2007. Formation of natural gypsum megacrystals in Naica, Mexico. Geology, 35:327–330.
Ghazban, F., 2007. Petroleum Geology of the Persian Gulf. Tehran University Press, Iran, 707 p.
Gindre-Chanu, L., Warren, J.K., Puigdefabregas, C., Sharp, I.R., Peacock, D.C.P., Swarts, R., Poulsen, R., Ferreira, H., & Henrique, L., 2014. Diagenetic evolution of Aptian evaporites in the Namibe Basin, (south-west Angola). Sedimentology, 62: 204-233.
Gudmundsson, A., Fjeldskaar, I., & Brnner, S.L., 2002. Propagation pathways and fluid transport of hydrofracturesin jointed and layered rocks in geothermal fields. Journal of Volcanology and Geothermal Research, 116: 257-278.
Gustavson, T.C., Hovorka, S.D., & Dutton, A.R., 1994. Origin of satin spar veins in evaporite basins. Journal of Sedimentary Research, 64: 88-94.
Heydari, E., 2008. Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran. Tectonophysics, 451:56-70.
Holliday, D.W., 1970. The petrology of secondary gypsum rocks. Journal of Sedimentary Petrology, 40:734-744.
Jakucs, L., 1977. Morphogenetics of Karst Regions,Wiley (Halstead Press), New York, 284p.
James, N.P., & Kendall, A.C., 1992. Introduction to carbonate and evaporite facies models. In: Facies Models: Response to Sea Level Change (Eds. R.G. Walker and N.P. James). Geological association of Canada, Geotext 1: 265-275.
Johnson, K.S., 2008. Evaporite-karst problems and studies in the USA. Environmantal Geology, 53:937-994.
Jowett, E.C., Cathiles, L.M., & Davis, B.W., 1993. Predicting depths of gypsum dehydration in evaporitic sedimentary basins. American Association of Petroleum Geologists Bulletin, 77: 402-13.
Kasprzyk, A., 2003. Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporate basin of Carpatian Foredeep, Southern Poland. Sedimentary Geology, 154: 167-194.
Kirkland, D.W., 2003. An explanation for the varves of the Castile evaporates (upper Permian), Texas and New Mexico, USA. Sedimentology, 50: 898-920.
Koop, W., & Stoneley, R., 1982. Subsidence history of the middle East Zagros basin, Permian to Recent, Philosphical Transactions of Royal Society of Lodon Series A. Mathematical and Physical Sciences, 305:149 -168.
Kuznetsov, V.G., 2006. Cyclicity of shallow-water carbonate sediments in different climatic zones. Lithology and Mineral Resources, 41: 505–517.
Lugli, S., 2001. Timing of post-depositional events in the Burano Formation of the Secchia valley (Upper Triassic, Northern Apennines), clues from gypsum-anhydrite transitions and carbonate metasomatism. Sedimentary Geology, 140: 107–22.
Machel, H.G., 1992. Low-temperature and high-temperature origins of elemental sulfur in diagenetic environments. In: Wessel, G.R. & Wimberly, B.H., (eds.), Native Sulfur. Developments in Geology and Exploration, 3-22.
Machel, H.G., 1985. Fibrous gypsum and fibrous anhydrite in veins. Sedimentology, 32: 443–54.
Maiklem, W.R., Bebout, D.G., & Glaister, R.P., 1969. Classification of anhydrite-a practical approach. Bulletin of Canadian Petroleum Geology, 17: 194-233
Mazzullo, S.J., 1992. Geochemical and neomorphic alteration of dolomite: a review. Carbonates and Evaporites, 7: 21-37.
Melvin, J.L., 1991. Evaporates, Petroleum and Mineral Resources. Elsevier Science Publishing Company, 556 p.
Melim, L.A., & Scholle, P.A., 2002. Dolomitization of the Capitan Formation fore reef facies (Permian, West Texas and New Mexico): seepage reflux revisited. Sedimentology, 49: 1207-1227.
Morgas, M., Martinez, C., Baques, V., Playa, E., Trav, A., Alias, G., & Cantarero, I., 2013. Diagenetic evolution of a fractured evaporite deposit (Vilobi Gypsum Unit, Miocene, NE Spain). Geofluids, VII: 1-14
Murris, R.J., 1980. Middle East: Stratigraphic evolution and oil habitat. American Association of Petroleum Geologists Bulletin, 64: 597–618.
NIOC (National Iranian Oil Company), 1979. Geological Quadrangle map of Iran No.G-11 (Shiraz), scale 1: 250,000. Exploration and Production Division, Tehran.
Orti, F., Rosell, L., Ingles, M., & Playa, E., 2007. Depositional models of lacustrine evaporites in the SE margin of the Ebro Basin (Paleogene, NE Spain). Geological Acta, 5: 19–34.
Orti, F., 2010. Selenite facies in marine evaporites: a review. In: Kendall, Ch.G.St.C. & Alsharhan A.S., (eds.), Quaternary carbonate and evaporite sedimentary facies and their ancient analogues: A tribute to Douglas James Shearman. International Association of Sedimentologists. Special Publication 43: 431-464.
Peryt, T.M., 2001. Gypsum facies transitions in basin-marginal evaporites: Middle Miocene (Badenian) of West Ukraine. Sedimentology, 48: 1103-1119.
Peryt, T.M., 2013. Palaeogeographical zonation of gypsum facies: Middle Miocene Badenian of Central Paratethys (Carpathian Foredeep in Europe). Journal of Palaeogeography, 2: 225-237.
Philipp, S.L., 2008. Geometry and formation of gypsum veins in mudstones at Watchet, Somerset, SW England, Geological Magazine. Cambridge University Press, 145: 831-844.
Piryaei, A., Reijmer, J.G., Frans, S.P., Van buchem, F.S.P., Yazdi-Moghadam, M., Sadouni, J., & Danelian, T., 2010. The influence of Late Cretaceous tectonic processes on sedimentation patterns along the northeastern Arabian plate margin (Fars Province, SW Iran). In: Leturmy, P., & Robin, C., (eds.) Tectonic and Stratigraphic Evolution of Zagros and Makran during the Mesozoic-Cenozoic. Geological Society, London, Special Publications, 330: 211–251.
Playa, E., Orti, F., & Rosell, L., 2000. Marine to nonmarine sedimentation in the upper Miocene evaporates of the Eastern Betics, SE Spain: sedimentological and geochemical evidences. Sedimentary Geology, 133: 135-166.
Qing, H., Bosence, D.W.J., & Rose, P.F., 2001. Dolomitization by penesaline seawater in early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean. Sedimentology, 48:153–163.
Rouchy, J.M., Bernet-Rollands, M.C., & Maurin, 1994. Descriptive Petrography of Evaporites; Application in the field, Subsurface and the Laboratory, Evaporite sequences in Petroleum Exploration. Geological Methods, Editions Techniq, 71-123.
Schreiber, B.C., Fridman, G.M., Decima, A., & Schreiber, E., 1976. The depositional environments of the Upper Miocene (Messinian) evaporate deposits of the Sicilian Basin. Sedimentology, 23: 729-760.
Schreiber, B.C., 1988. Subaqueous evaporite deposition. In: Schreiber, B.C., (ed.), Evaporites and Hydrocarbons. Columbia University Press, New York, 182-255.
Schroder, S., Schreiber, B.C., Amthor, J.E., & Matter, A., 2003. A depositional model for terminal Neoproterozoic - Early Cambrian Ara Group evaporates in south Oman. Sedimentology, 50: 879-898.
Shabafroz, R., Mahboubi, A., Moussavi-Harami, R., & Amiri Bakhtiar, H., 2013. Facies analysis and sequence stratigraphy of the evaporite bearing Sachun Formation at the type locality, South East Zagros Basin, Iran. Carbonate and Evaporites, 28: 457-574
Shearman, D.J., Mossop, G., Dunsmore, H., & Martin, H., 1972. Origin of Gypsum veins by hydraulic fracture. Transactions of the institute of Mining and Metallurgy. Section B. Applied Earth Sciences, 81:149-55.
Sherkati, S., Molinaro, M., Frizon de Lamotte, M., and Letouzey, J., 2005. Detachment folding in the Central and Eastern Zagros fold-belt (Iran): salt mobility, multiple detachments and late basement control. Journal of Structural Geology, 27: 1680–1696
Sibley, D.F., & Gregg, J.M., 1987. Classification of dolomite rock textures. Journal of Sedimentary Petrology, 57: 967-975.
Sonnenfeld, P., 1984. Brines and evaporate. Acadamic press, INC, 613 p.
Stafford K.W., Ulmer-Scholle, D., & Rosales-Lagarde, L., 2008. Hypogene Calcitization: Evaporite Diagenesis in the Western Delaware Basin. Carbonates and Evaporites, 23: 89-103.
Stanton, R.J.J., 1966. The solution brecciation process. Geological Society of America Bulletin, 77: 843-848.
Stocklin, J., 1968. Structural history and tectonic of Iran. American Association of Petroleum Geologists Bulletin (AAPG), 52: 1229-1258.
Stow, D.A., 2005. Sedimentary Rock in the Field, A Color Guide. Academic Press, 320p.
Strohmenger, C.J., Shebl, H., Al-Mansoori, A., Al-Mehsin, K., Al-Jeelani, O., Al-Hosani, I., Al-Shamry, A., & Al-Baker, S., 2011. Facies stacking patterns in a modern arid environment: a case study of the Abu Dhabi sabkha in the vicinity of Al-Qanatir Island, United Arab Emirates. In: Kendall, G.St.C., & Alsharhan, A.S., (eds.), Quaternary carbonate and evaporite sedimentary facies and their ancient analogues. International Association of Sedimentologists, Special Publication 43: 149-183
Testa, G., & Lugli, S., 2000. Gypsum anhydrite transformation in Messinian evaporates of central Tuscany (Italy). Sedimentology Geology, 130: 249–268.
Torres, G., Playa, E., Alias G., Correa, A., Chong, G., & Pueyo, J.J, 2012. Transformaciones texturales y minerales de evaporitas en las facies de los esquistos verdres. Distrito minero Teresa del Colmo (N de Chile). In: VIII Congreso Geologico de Espana. Sociedad Geologica de Espana, Oviedo, Spain, Geo-Temas XIII.
Ulmer-Scholle, D.S., & Scholle, P.A., 1994. Replacement of evaporites within the Permian Park City Formation, Bighorn Basin, Wyoming, USA. Sedimentology, 41: 1203–1222.
Vaziri-Moghaddam, H., Kimiagari, M., & Taheri, A., 2006. Depositional environment and sequence stratigraphy of the Oligo- Miocene Asmari Formation in SW Iran. Facies, 52:41-51.
Warren, J., & Kendall. C., 1985. Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) set‌ting, modern and ancient. American Association of Petroleum Geologists., 69: 1013-1023.
Warren, J.K., 1996. Evaporates brines and base metals: What is an evaporate? Defining the rock matrix. Australian Journal of Earth Science, 43: 115-132.
Warren, J., 1999. Evaporites, There evolution and economics, Blackwell Science, 438p.
Warren, J., 2000. Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis. Australian Journal of Earth Sciences, 47: 179-208
Warren, J.K., 2000. Dolomite; occurrence, evolution and economical important association. Earth science Review, 52: 1-18.
Warren, J.k., 2006. Evaporates: Sediments, Resources and Hydrocarbons. Springer-Verlag Berlin, 1035 p.
Warren, J.K., 2010. Evaporites through time: tectonic, climatic and esutatic controls in marine and non-marine deposits. Earth Science Review, 98: 217-268.
Wilstchko, D.V., & Morse, J.W., 2001. Crystallization pressure versus ‘crack seal’ as the mechanism for banded veins. Geology, 29: 79–82.
Ziegler, M.A., 2001. Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. Geo Arabia, 6: 445-503.
CAPTCHA Image