Petrography and geochemistry of Miocene red clastic sediments in Taleqan area, northwest of Karaj

Document Type : مقالات پژوهشی

Authors

Kharazmi university

Abstract

Introduction
Three main goals have driven studies of sandstone in the past ten years: Firstly, the academics motive to understand the tectonic setting, climatic situation, paleo-geographic position. Secondly, the economic motive to predict reservoir ability and porosity and permeability in hydrocarbon fields. Thirdly, the motion or stasis of pore fluids and the scale of mass-transport to form cements. This research involved the first one. Sedimentary rocks are principal sources of information concerning past conditions on the Earth’s surface. Clastic rocks may preserve detritus from long-eroded source rocks and may provide the only available clues to the composition and timing of exposure of source rocks. Geochemistry of sedimentary rocks may complement the petrographic data, especially when the latter are ambiguous. The geochemical composition of sedimentary rocks is a complex function of various variables such as source material, weathering, transportation, physical sorting, and diagenesis. Very few studies on Miocene clastic sediments have been conducted in the country, in zones other than the Central Iran. Hence there are many questions without response in this area. This research is trying to get some solution for these questions
Methods and Results
In this research, clastic sediments in the central Alborz have studied using facies analysis, petrography, grains counting and geochemical methods. For this propose, from two sections in the Taleqan area fresh rock samples were collected from outcrops exposed in stream and road cuts and were washed thoroughly in distilled water to remove dust contamination. 52 samples were selected for detailed petrographic study. Also 24 thin sections selected for grain counting and modal analyses according to Dickinson method. Coarse grains classified based on Miall method.  In geochemical studies, we used XRF Philips 1480 for determination of major and minor elements oxides. After preparation, 15 samples were selected for analysis. Measurement accuracy ranges were 0.1 to 0.001. This sequence is mainly composed of marl, sandstone and locally intercalation of conglomerate with Pebble size particles. Studied outcrop is formed of fine grained sedimentary sequence (Marl), sandstones (Feldespatic litharenite and volcanic arenite) and conglomerate (poly-mictic ortho and Para-conglomerate) with 127.2 m thickness. The strata in this formation are composed of two gravelly (Gmm and Gcm) and three sandy (St, Sh and Sm) facies. The main components of these deposits are igneous rock fragments with poorly to moderate sorting and moderate to good roundness that are welded together with hematite dominant cement.
Discussion
Roser & Korsch (1986) established a discrimination diagram using log (K2O/Na2O) versus SiO2 to determine the tectonic setting of terrigenous sedimentary rocks. These authors used CaO and LOI-free 100% adjusted data to determine their field boundaries. Both parameters (SiO2 and log (K2O/Na2O) values) increase from volcanic-arc to active-continental-margin to passive-margin settings.  Discrimination of tectonic settings on the basis of major-element data also was proposed by Bhatia (1983); it includes oceanic island arc, continental island arc, active continental margin, and passive margin. Most of our sandstone samples fall in the general area of passive margin and active-continental-margin fields of the TiO2 versus Fe2O3* 1 MgO plot, but mostly in the passive-margin field of the Al2O3/SiO2 versus Fe2O3* 1 MgO diagram. Petrographic data show that K-feldspar dominates over plagioclase, which may result from intense weathering in the source area or from diagenetic alteration. The latter can be ruled out by the presence of abundant carbonate cement that developed probably during early diagenesis. The intensity and duration of weathering in sedimentary rocks can be evaluated by examining the relationships among alkali and alkaline earth elements (Nesbitt & Young, 1982, 1984). Feldspars are by far the most abundant of the reactive minerals. Consequently, the dominant process during chemical weathering of the upper crust is the alteration of feldspars and the neo-formation of clay minerals. During weathering, calcium, sodium, and potassium are largely removed from feldspars (Nesbitt et al., 1997). The amount of these elements surviving in the soil profiles and in the associated sediments is a quantitative index of the intensity of weathering (Fedo et al., 1995; Nesbitt et al., 1997). A good measure of the degree of chemical weathering can be obtained by calculation of the chemical index of alteration (CIA; Nesbitt & Young, 1982) using the formula (molecular proportions). According to results, these sediments have felsic igneous source rock similar to upper continental crust, which has been deposited in the semi-arid dry climate with weak weathering. Final deposits were traveled relatively small distance and were deposited in the first sedimentation cycle with low degree of maturity, low chemical weathering, in active tectonic environment. Thus, the low CIA values of the Taleqan sandstones do not reflect the general chemical weathering conditions in the source region, which can be inferred from the petrographic observations. This is probably due to the sedimentary sorting effect. Physical sorting of sediment during transport and deposition led to concentration of quartz and feldspar with some heavy minerals in the coarse fraction and of secondary lighter and more weathered minerals in the suspended-load sediments.
Conclusion
This sedimentation happened in the alluvial braided river’s channel and floodplain near the origin with weak hydraulic separation and oceanic arc tectonic Setting.
Keywords: Petrography; Geochemistry; Clastic sediments; Miocene; Taleqan.
Reference
Bhatia, M.R., 1983. Plate tectonic and geochemical composition of sandstones. The Journal of Geology, 91 (6): 611-27.
Fedo, C.M., Nesbitt, H.W., & Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rock sand paleosols, with implications for paleoweathering conditions and provenance. Geology, 23: 921-924.
Nesbitt, H.W., Fedo, C.M., & Young, G.M., 1997. Quartz and feldspar stability, steady and non-steady-state weathering and petrogenesis of siliciclastic sands and muds. Geology, 105: 173-191
Nesbitt, H.W., & Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717.
Nebitt, H.W., & Young, G.M., 1984. Prediction of some weathering trends of plutonic volcanic rocks based on thermodynamic and kinetic considerations. Geochimica, Cosmochimica, Acta, 48: 1523-1534.
Roser, B.P., & Korsch, R.J., 1986. Determination of tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ration. Journal of Geology, 94: 635-650.

Keywords


آقانباتی، ع.، 1385. زمین‌شناسی ایران. سازمان زمین‌شناسی و اکتشافات معدنی کشور، 586 ص.
حکیمی‌آسیابر، س.، پورکرمانی، م.، شهریاری، س.، قربانی، م.، قاسمی، م.ر.، 1390. تقسیمات تکتونیکی البرز غربی. مجله علوم پایه دانشگاه آزاد اسلامی، 21 (81): 113ـ124.
عباسی، ن.، امینی، ع.، 1385. اثرشناسی ردپای پستانداران میوسن در سازند سرخ بالایی، برش ایوانکی، خاور تهران. علوم زمین، 17 (67): 54 ـ67.
رضایی، خ.، فروغی، ش.، اسدی، الف.، 1394. پتروگرافی و ژئوشیمی ماسه ‌سنگ‌های سازند سرخ بالایی در برش منطقه حسن‌آبادـ جنوب غرب تهران. رسوب‌شناسی کاربردی، 3 (6): 43ـ56.
شهیدی، ع.، بایر، الف.، برونت، م.ف.، سعیدی، ع.، 1389. فرگشت ساختاری البرز در میان زیستی و نوزیستی. علوم زمین، 21 (38): 201ـ216.
نظری، ح.، رینتز، ژ.ف.، عقبایی، ش.، 1385. نگاهی نو بر جغرافیای دیرینه و فرگشت ساختاری البرز در تتیس. علوم زمین، 16 (63): 38 ـــــــ53.
Ahmed, S., Tarek, Y.M.A., & Essam, M.A., 2011. Sedimentological and petrophysical Characteristics of Rha formation at Wadi Tubai, North Golf of Aqaba, Sinai, Egypt. Egyptain Journal of Petroleum, 20: 79-87.
Allen, M.B., Vincent, S.J., Alsop, G.I., Ismail-zadeh, A., & Flecker, R., 2003. Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone. Tectonophysics, 366 (3-4): 223-239.
Amini, A., 1997. Provenance and Depositional Environment of the Upper Red Formation, Central Zone Iran. Ph.D. thesis, Manchester University, 1-320.
Annells, R.S., Arthurton, R.S., Bazley, R.A.B., Davies, R.G., Hamedi, M.A.R., & Rahimzadeh, F., 1977. Geological map of Shakran, scale 1:100000. Geological Survey of Iran.
Assereto, R., 1966. Geological Map of upper Djadjerud and Lar Valleys (Central Elburz, Iran) with explanatory notes. Institute of Geology, University of Milan, 1-86.
Berberian, M., & King, G., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18: 210-265.
Bhatia, M.R., 1983. Plate tectonic and geochemical composition of sandstones. The Journal of Geology, 91 (6): 611-627.
Boggs, S.J., 2006. Principles of Sedimentology and Stratigraphy, Fourth Edition. Upper Saddle River, New Jersey: Pearson Education Inc, 1-662.
Boot, A.W., & Schmeits, A., 2000. Market Discipline and Incentive Problems in Conglomerate Firms with Applications to Banking. Journal of Financial Intermediation, 9: 240-273.
Catuneanu, O., 2003. Sequence Stratigraphy of Clastic Systems. Geological Association of Canada, Short Course Notes, 16: 1-248.
Colella, A., & Prior, D.B., 2009. Coarse-Grained Deltas. Special Publication 10 of the IAS, 368 p.
Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104: 1-37.
Cox, R., Lowe, D.R., & Cullers, R.L., 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the south-western United States. Geochimica et Cosmochimica Acta, 59: 2919-2940.
Crook, K.A.W., 1974. Lithogenesis and geotectonics: The significance of compositional variation in flysch arenites (greywackes). Society of Economical, Paleontological and Mineralogical Special Publications, 19: 304-310.
Cullers, R.L., & Podkovyrov, V.M., 2000. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance, and recycling. Precambrian Research, 104: 77-93.
Das, B.K., Al-Mikhlafi, A.S., & Kaur, P., 2006. Geochemistry of Mansar Lake sediment, Jammu, India: Implication for source area weathering, provenance, and tectonic setting. Journal of Asian Earth Sciences, 104: 649-668.
Davis, A.M., Aitchison, J.C., Badengzhu, Hui L., & Zyabrev, S., 2002. Paleogene island arc collision related conglomerates, Yarlung-Tsangpo suture zone, Tibet. Sedimentary Geology, 150 (3-4): 247-273.
Diskin, S., Evans, J., Fowler, M.B., & Guion, P.D., 2011. Recognizing Different Sediment Provenance within a Passive margin setting: towards characterizing a sediment Source to the west of the British late Carboniferous sedimentary basins. Chemical Geology, 283: 143-160.
Dozy, J.J., 1955. A sketch of post-Cretaceous volcanism in central Iran. Leidse Geologische Mededelingen, 20 (1), 48-57.
Einsele, G., 2013. Sedimentary basins: evolution, facies, and sediment budget. Springer Science and Business Media, 1-727.
Fedo, C.M., Nesbitt, H.W., & Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rock sand paleosols, with implications for paleoweathering conditions and provenance. Geology, 23: 921-924.
Folk, R.l., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, Taxes, 182 p.
Gansser, A., 1955. New aspects of the geology in central Iran. Fourth World Petroleum Congress, 2: 280-300.
Garzanti, E., Vezzoli, G., Ando, S., Paparella, P., & Clift, P.D., 2005. Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan Syntaxis. Earth and Planetary Science Letters, 229 (3): 287-302.
Glaus, M., 1964. Trias und Oberperm in Zentralen Elburz (persian). Eclogae Geologicae Helveticae, 57 (2): 491-508.
Gomez, J.L., Chivelet, J.M., & Palma, R.M., 2009. Architecture and development of the alluvial sediments of the Upper Jurassic Tordillo Formation in the Canada Ancha Valley, northern Neuquen Basin, Argentina. Sedimentary Geology, 219: 180-195.
Garcia, D., Ravenne, C., Marechal, B., & Moutte, J., 2004. Geochemical variability induced by entrainment sorting: quantified signals for provenance analysis. Sedimentary Geology, 171 (14): 113-128.
Gonzalez-Lopez, J.M.G., Bauluz, B., Ferandez-Nieto, C., & Oliete, A., 2005. Factors controlling the trace- element distribution in fine-grained rocks: the Albian Kaolinite-rich deposits of the Oliete Basin (NE Spain). Chemical Geology, 214: 1-19.
Grecula, M., Flint, S.S., Wickens, H.D.V., & Johnson, S.D., 2003. Upward- thickening patterns and lateral continuity of Permian sand-rich turbidite channel fills, Laingsburg Karoo, South Africa. Sedimentology, 50 (5): 831-853.
Hayashi, K., Fujisawa, H., Holland, H.D., & Ohmoto, H., 1997. Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61: 4115-4137.
Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58: 820-829.
Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D., & Sares, S.W., 1984. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson poin-conting method. Journal of Sedimentary Petrology, 54: 103-116.
Khan, T., & Khan, M.S., 2016. Geochemistry of the sandstones of Punagarh basin: Implications for two source terranes and Arabian-Nubian connection of Aravalli craton. Journal of the Geological Society of India, 88 (3): 366-386.
Khalifa, M., & Catuneanu, Q., 2008. Sedimentary of the bahariya Formation (Early Cenomanian), Bahariya Oasis, Western Desert, Egypt. Journal of African Earth Sciences, 51: 89-103.
Kosun, E., Poisson, A., Ciner, A., Wernli, R., & Monod, O., 2009. Syn-tectonic sedimentary evolution of the Miocene Atallar Basin, southwestern Turkey. Journal of Asian Earth Sciences, 34: 466-479.
Lahtinen, R., 2000. Archaean-Proterozoic transition: geochemistry, provenance and tectonic setting of metasedimentary rocks in central Fennoscandian Shield, Finland. Prcambrian Research, 104 (3-4): 147-174.
Loftus, W., 1855. On geology of portions of the Turco-Persian frontier and of the districts adjoining. Quarterly Journal of the Geological Society, 11 (1): 247-245.
Mclennan, S.M., Taylor, S.R., McCulloch, M.T., & Maynard, J.B., 1990. Geochemicaland Nd-Sr Isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54: 2015-2050.
McLennan, S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems, 2: 1-109.
Miall, A.D., 2000. Principles of Sedimentary Basin Analysis. 3rd Edition, Springer Verlag, 1-616.
Miall, A.D., 2006. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer Verlag, 4th corrected printing, 1-582.
Mutti, E., Tinterri, F., Benevelli, G., Biase, D., & Cavanna, G., 2003. Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Marine and Petroleum Geology, 20 (6-8): 733-755.
Nesbitt, H.W., & Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717.
Pettijohn, F.J., Potter, P.E., & Siever, R., 1972. Sand and Sandstone. Plate motions inferred from major element chemistry of lutites. Precambrian Research, 147: 124-147.
Peter, A.L., & Steel, R.J., 2006. Hyperpycnal flow variability and slope organization on an Eocene shelf margin, Central Basin, Spitsbergen. American Association of Petroleum Geologists Bulletin, 90 (10): 1451-1472.
Roberts, E., 2007. Facies architecture and depositional environments of the Upper Cretaceous Kaiparowits Formation, southern Utah. Sedimentary Geology, 197: 207- 233.
Roser, B.P., & Korsch, R.J., 1986. Determination of tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ration. Journal of Geology, 94: 635-650.
Roser, B.P., & Korsch, R.J., 1988. Provenance signature of sandstone-mudstone suite determined using discriminate function analysis of major element data. Chemical Geology, 67: 119-139.
Roy, D., & Roser, B.P., 2012. Geochemistry of the Tertiary sequence in the Shahbajpur-1 well, Hatia Trough, Bengal Basin, Bangladesh: Provenance, source weathering and province affinity. Journal of Life and Earth Science, 7: 1-13.
Rudnick, R.L., & Gao, S., 2003. Composition of the continental crust. In The Crust Treatise on Geochemistry. In: Holland, H.D., & Turekian, K.K., (eds.), Elsevier- Pergamon, Oxford, 3: 1-64.
Shafiei, B., Haschke, M., & Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44:
265-283.
Shaw, D.M., 1968. A review of K-Rb fractionation trends by covariance analysis. Geochimica et Cosmochimica Acta, 32: 573-602.
Soder, P., 1951. The Oligo-Miocene marine formation in the Qum region. National Iranian Oil Company Geological, Report No. 123.
Stahl, A.F., 1911. Persian. Heidelberg, Hansboch der Regionalen Geologie, 5 (8): 1-46.
Stocklin, J., & Eftekhar-nezhad, J., 1969. Explanatory text of the Zanjan Quadrangle map. Geological Survey of Iran, 1-61.
Suttner, L.J., & Dutta, P.K., 1986. Alluvial sandstone composition and paleoclimate 1. Framework mineralogy. Journal of Sedimentary Petrology, 56: 326-345.
Taylor, S.R., & McLennan, S.M., 1981. The composition and evolution of the continental crust: Rare earth evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 30: 381-399.
Taylor, S.R., & McLennan, S.M., 1985. The continental crust: its composition and evolution. Blackwell Scientific Publication, Carlton, 1-312.
Tucker, M.E., 2009. Sedimentary petrology: an introduction to the origin of sedimentary rocks. John Wiley and Sons, 1-272.
Walker, R.G., 1992. Facies, facies models and modern stratigraphic concepts. In: Walker, R.G., & James, N.P., (eds.), Facies Models, Geological Association of Canada, 1-15.
Wilmsen, M., Fürsich, F.T., Seyed‐Emami, K., Majidifard, M.R., & Taheri, J., 2009. The Cimmerian Orogeny in northern Iran: Tectono‐stratigraphic evidence from the foreland. Terra Nova, 21 (3):
211-218.
Yanagi, T., 2011. Generation of continental crust from the mantle. Springer, 1-123.
CAPTCHA Image