Interaction of carbonate host rock with ore-forming fluid in mineralization process in Nakhlak lead-(silver) deposit, Isfahan

Document Type : مقالات پژوهشی

Authors

Ferdowsi University of Mashhad

Abstract

Introduction
Nakhlak Pb-(Ag) deposit, one of the oldest and largest Iranian lead deposits, is located at the Nakhlak Mountain about 55 km NE of Anarak, a town in Isfahan Province, Iran. Lead ores are mainly hosted by open space of fractures and normal faults in the Upper Cretaceous carbonate (Sadr unit). The style of mineralization is stratabound and epigenetic, as shown by steeply east-west veins. Ore deposition in the Nakhlak deposit was controlled by three main factors: 1) lithology, 2) stratigraphy, and 3) structure. These can be viewed as fundamental controls of fluid transmissivity, either at the district or mine scale, that allowed the focusing of fluid flow and created opportunities for depositional processes to occur (Leach et al., 2005).
 
Materials and methods
The Nakhlak Pb-(Ag) deposit is situated in the northwest corner of the Central Iran Structural Zone, which contains the Anarak region. The Nakhlak deposit is on the eastern fringe of Nakhlak Mountain. This mountain consists of pre-Triassic? ophiolites (Holzer and Ghasemipour, 1973; Alavi et al., 1997) and a Triassic sedimentary succession (Nakhlak Group, which comprises the Alam, Baqoroq, and Ashin formations), Upper Cretaceous (Sadr unit), and Paleocene (Khaaled unit) sedimentary cover. The Upper Cretaceous carbonate rocks (Cenomanian to Campanian), crop out across a large area of Nakhlak and reach a thickness of 258 m (Khosrow-Tehrani, 1977; Vaziri et al., 2005; Vaziri et al., 2012). The Sadr unit consists of conglomerates, sandy limestones, calcareous sandstones, sandy dolostones, sandy-argillaceous limestones, sandy dolomitic limestones, and reefal limestones that have been subdivided into five subunits on the basis of their facies characteristics (Rasa, 1987). The Sadr unit rocks exposed on Nakhlak Mountain represent marginal-marine, shallow-shelf, and moderately deep marine environments (Vaziri et al., 2012).
 
Discussion and Conclusion
The Sadr unit displays suitable characteristics for mineralization such as the presence of reef and dolostone facies and limestone to dolostone transition. The alteration of wall rock in the Nakhlak deposit is represented by the dissolution of carbonate and hydrothermal carbonates deposition that widespread close to ore-body and occurred from pre to syn- mineralization. There are three types of dolomite in relation to mineralization, which saddle dolomite is the most important type of them. MgO, Fe2O3(Fe total), MnO as well as Pb, Ba, and Zn are enriched in altered wall rock and in contrast with CaO is depleted. The positive relationship observed between the intensity of the dolomitization process, the concentration of ore- metals, and sulfide mineralization in carbonate host rocks; suggesting that the migration of metal-bearing fluids was linked to hydrothermal processes. The estimate of hydrothermal fluid nature of the Nakhlak Pb-(Ag) deposits hydrothermal dolomite indicate a basinal brines (average 14.11 wt% NaCl eq.) and low temperatures (average 174 C), relatively equivalent with ore-forming fluid. In the Nakhlak deposit, interaction of carbonate host rock with the ore-forming fluid of mineralization process performed by feedback mechanisms. The suitable carbonate host rock (chemically and physically) is main factor entering of hydrothermal fluid into the host rocks and mineralization causing the dissolution of carbonate host rocks and increased formation of hydrothermal dolomite in the host rock, and consequently, that dissolution and dolomitization increased permeability of the host rock for ore fluids and allowed the deposition of additional ore minerals.
 
Acknowledgment
The Research Foundation of Ferdowsi University of Mashhad, Iran, supported this study (Project No. 22734.3) and it has been done with the support of Nakhlak Lead Mining Complex.
 
Keywords: Dolomite; petrography; geochemistry; fluid inclusion; basinal brine; Nakhlak.
 
References
Alavi, M., Vaziri, S.H., Seyed-Emami, K., & Lasemi, V., 1997. The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian continental margin. Geological Society of America Bulletin, 109: 1563-1575.
Holzer, H.F., & Ghasemipour, R., 1973. Geology of the Nakhlak lead mine area (Anarak district, Central Iran). Geological Survey of Iran, Report No. 21, 44 p.
Khosrow-Tehrani, K., 1977. Etude stratigraphique du Créât supérieur et du Paléocène de l'Iran Central. Ph.D. thesis, Université Pierre et Marie Curie, Paris, 468 p. (In French).
 Leach, D.L., & Sangster, D.F., 1993. Mississippi Valley-type lead-zinc deposits. In: Kirkham, R.V., Sinclair, W.D., Thorp, R.I., & Duke, J.M. (eds.), Mineral Deposit Modeling. Geological Association of Canada Special Paper, 40: 289-314.
Rasa, I., 1987. Geologisch-petrographische Untersuchungen in der Blei-Lagerstätte Nakhlak, Zentraliran. Mineralogisch-Petrographisches Institut, Universität Heidelberg, Ph.D thesis, 190 p. (in German with English abstract)
Vaziri, S.H., Fursich, F.T., & Kohansal-Ghadimvand, N., 2012. Facies analysis and depositional environments of the Upper Cretaceous Sadr unit in the Nakhlak area, Central Iran. Revista Mexicana de Ciencias Geológicas, 29: 384-397.
Vaziri, S.H., Senowbari-Daryan, B., & Kohansal-Ghadimvand, N., 2005, Lithofacies and microbiofacies of the Upper Cretaceous rocks (Sadr unit) of Nakhlak area in Northeastern Nain, Central Iran. Journal of Geosciences, Osaka City University, 48: 71-80.

Keywords


اپچیلر، م.، 1383. بیواستراتیگرافی و سنگ‌شناسی سنگ‌های پالئوسن در کوه نخلک واقع در شمال شرق نائین، ایران‌مرکزی. پایان‌نامه کارشناسی ارشد، دانشگاه آزاد واحد تهران شمال، 168 ص.
آدابی، م.ح.، 1383. ژئوشیمی رسوبی. انتشارات آرین زمین، 488 ص.
خسروتهرانی، خ.، 1367. چینه‌شناسی ایران. انتشارات دانشگاه تهران، 560 ص.
رحیم‌پور بناب. ح.، 1384. سنگ‌شناسی کربناته: ارتباط دیاژنز و تکامل تخلخل. انتشارات دانشگاه تهران، 487 ص.
رسا، ا.، کاظمی‌مهرنیا، ک.، 1384. کانسارهای فلزات پایه با میزبان سنگ‌های کربناته. انتشارات روزبهان تهران، 262 ص.
Alavi, M., Vaziri, S.H., Seyed-Emami, K., & Lasemi, V., 1997. The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian continental margin. Geological Society of America Bulletin, 109: 1563-1575.
Anderson, G.M., 1975. Precipitation of Mississippi Valley-type ores. Economic Geology, 70: 937-942.
Balini, M., Nicora, A., Berra, F., Garzanti, E., Levera, M., Mattei, M., Muttoni, G., Zanchi, A., Bollati, I., Larghi, C., Zanchetta, S., Salamati, R., & Mossavvari, F., 2009. The Triassic stratigraphic succession of Nakhlak (Central Iran), a record from an active margin. Geological Society of London, Special publications, 312: 287-321.
Barnes, H.L., 1983. Ore depositing reactions in Mississippi Valley- type deposits. In: Kisvarsanyi, G., Grant, S.K., Pratt, W.P., & Koenig, J.W., (eds.), International Conference on Mississippi Valley Type Lead Zinc Deposits. Proceedings volrune, 77-85.
Bazargani-Guilani, K., Rabiei, M., & Mehrabi, B., 2013. Effects of host rock mineralogical composition and sedimentary facies on development of geochemical halos in Shahmirzad Pb/Zn deposits, central Alborz, Iran. Journal of Geochemical Exploration, 124: 155-165.
Chen, X.P., & Gao, J.Y., 1988. Thermal water deposition and Pb-Zn barite deposits in the Devonian System, Central Guiana. Geochemical Acta, 7: 321-328.
Cherepovsky, N., Plyaskin, V., Zhitinev, N., Kokorin, Y.U., Susov, M., Melnikov, B., & Aistov, L., 1982. Report on detailed geological prospecting in Anarak area (Central Iran) Nakhlak locality. Geological Survey of Iran, Report No. 14: 1-196.
Corbella, M., Ayora, C., & Cardellach, E., 2004. Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits. Mineralium Deposita, 39: 344-357.
Davoudzadeh, M., & Seyed-Emami, K., 1972. Stratigraphy and paleontology of the Triassic Nakhlak group Anarak Region, Central Iran. Geological Survey of Iran, Report No. 28: 5-28.
Dickson, J.A.D., 1965. A modified staining technique for carbonate in thin section. Nature, 205: 587.
Evans, A.M., 1993. Ore Geology and Industrial Minerals: An Introduction. Blackwell Scientific Publication, 390 p.
Friedman, G.M., 1965. Terminology of crystallization textures and fabrics in sedimentary rocks. Journal of Sedimentary Petrology, 35: 643-655.
Ghazban, F., McNutt, R.H., & Schwarcz, H.P., 1994. Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh District, Esfahan area, West-Central Iran. Economic Geology, 89: 1262-1278.
Hall, D.L., Sterner, S.M., & Bodnar, R.J., 1988. Freezing point depression of NaCl-KCl-H2O solution. Economic Geology, 83: 197-202.
Han, F., & Hatchinson, R.W., 1990. Evidence for exhalative origin of the Dachang tin-poly metallic sulfide deposits-their geological and geochemical characteristics. Mineralium Deposita, 9: 319-324.
Hartree, R., Veizer, J., 1982. Lead and zinc distribution in carbonate rocks. Chemical Geology, 37: 351-365.
Hill, C.A., 1995. H2S-related porosity and sulfuric acid oil-field karst. In: Budd, D.A., Saller, A.H., & Harris, P.M., (eds.), Unconformities and Porosity in Carbonate Strata. American Association of Petroleum Geologists Memoir, 63: 301-306.
Holzer, H.F., & Ghasemipour, R., 1973. Geology of the Nakhlak lead mine area (Anarak district, Central Iran). Geological Survey of Iran, Report No. 21, 44 p.
Jazi, M.A., Karimpour, M.H., & Malekzadeh Shafaroudi, A., 2017. Nakhlak carbonate-hosted Pb-(Ag) deposit, Isfahan province, Iran: A geological, mineralogical, geochemical, fluid inclusion, and sulfur isotope study. Ore Geology Reviews, 80: 27-47.
Kablukov, A. D., 1964. Dispersion halos of uranium and its associations in exploration for hydrothermal uranium deposits. Nedra, 234 p.
Kesler, S.E., 2005. Ore-forming fluids. Elements, 1: 13-18.
Kharaka, Y.K., & Hanor, J.S., 2003, Deep Fluids in the Continents: I. Sedimentary Basins. In: Drever, J.I., (ed.), Surface and Ground Water, Weathering and Soils. Treatise on Geochemistry, 5: 1-48.
Large, R.R., Bull, S.W., & Winefield, P.R., 2001. Carbon and Oxygen isotope halo in carbonates related to the McArthur River (HYC) Zn-Pb-Ag deposit, north Australia: Implications for sedimentation, ore genesis, and mineral exploration. Economic Geology, 96: 1567-1593.
Leach, D.L., & Sangster, D.F., 1993. Mississippi Valley-type lead-zinc deposits. In: Kirkham, R.V., Sinclair, W.D., Thorp, R.I., & Duke, J.M. (eds.), Mineral Deposit Modeling. Geological Association of Canada Special Paper, 40: 289-314.
Leach, D.L., Sangster, D.F., Kelley, K.D., Large, R.R., Garven, G., Allen, C.R., Gutzmer, J., & Walters, S., 2005. Sediment-hosted lead-zinc deposits: a global perspective. Economic Geology 100th Anniversary Volume, 561-608.
Maqueen, R.W., 1979. Basmental deposit in sedimentary rocks some approaches. Geoscience, 6: 3-9.
Mazzullo, S.J., 1992. Geochemical and neomorphic alteration of dolomite: a review. Carbonates Evaporites, 7: 21-37
Radke, B.M., & Mathis, R.L., 1980. On the formation and occurrence of saddle dolomite. Journal of Sedimentary Petrology, 50:1149-1168.
Rasa, I., 1987. Geologisch-petrographische Untersuchungen in der Blei-Lagerstätte Nakhlak, Zentraliran. Mineralogisch-Petrographisches Institut, Universität Heidelberg, Ph.D thesis, 190 p. (in German with English abstract)
Roedder, E., 1984. Fluid inclusions. Mineralogical Society of America, Reviews in mineralogy, 12: 644 p.
Ruffell, A.H., Moles, N.R., & Parnell, J., 1998. Characterization and prediction of sediment hosted ore deposits using sequence stratigraphy. Ore Geology Reviews, 12: 207-223.
Ruttner, A.W., 1993. Southern borderland of Triassic Laurasia in northeast Iran. Geologische Rundschau, 82: 110-120.
Seyed-Emami, K., 2003. Triassic in Iran. Facies, 48: 91-106.
Shen, D.Q., Chem, Y.Q., & Yang, Z.Q., 1987. Sedimentary facies, Paleogeography and their controls over ore deposits of the Qiziqiao Formation, upper Middle Devonian, South China. Geological publishing house Beijing, China.
Shepherd, T.J., Rankin, A.H., & Alderton, D.H.M., 1985. A practical guide to fluid inclusion studies. Blackie, London, 239 p.
Sibley, D.F., & Gregg, J.M., 1987. Classification of dolomite rock textures. Journal of Sedimentary Petrology, 57: 967-975.
Swennen, R., & Viaene, W., 1990. Lithogeochemical patterns around Pb-Zn deposits in Dinantian carbonate rocks of (eastern) Belgium. Mineralium Deposita, 25: 251-261.
Vandeginste, V., Swennen, R., Gleeson, S.A., Ellam, R.M., Osadetz, K., & Francois, R., 2007. Geochemical constraints on the origin of the Kiking Horse and Monarch Mississippi Valley-type lead-zinc ore deposits, southeast British Columbia, Canada. Mineralium Deposita, 42: 913-935.
Vaziri, S.H., Fursich, F.T., & Kohansal-Ghadimvand, N., 2012. Facies analysis and depositional environments of the Upper Cretaceous Sadr unit in the Nakhlak area, Central Iran. Revista Mexicana de Ciencias Geologicas, 29: 384-397.
Vaziri, S.H., Senowbari-Daryan, B., & Kohansal-Ghadimvand, N., 2005, Lithofacies and microbiofacies of the Upper Cretaceous rocks (Sadr unit) of Nakhlak area in Northeastern Nain, Central Iran. Journal of Geosciences, Osaka City University, 48: 71-80.
Veizer, J., 1983. Trace elements and isotope in sedimentary carbonates. Reviews in Mineralogy and Geochemistry, 11: 265-300.
Warren, J., 2000. Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews, 52: 1-81.
Whitney, D.L., & Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185-187.
Wu, Y., Zhou, F.L., Tiang, T.C., Fang, D.N. & Huang, W.S., 1987. The Sedimentary Facies, Palaeogeography and Relative Mineral Deposits of the Devonian System in Guangxi. Guangxi Peoples Publishing House, Nanning. p. 292.
Zanchi, A., Zanchetta, S., Garzanti, E., Balini, M., Berra, F., Mattei, M., & Muttoni, G., 2009. The Cimmerian evolution of the Nakhlak-Anarak area, Central Iran and its bearing for the reconstruction of the history of the Eurasian margin. In: Brunet, M.-F., Wilmsen, M., & Granath, J.W., (eds.), South Caspian to Central Iran basins. Geological Society of London, Special Publications, 312: 261-286.
CAPTCHA Image