مقایسه ژئوشیمیایی ماسه‌‏سنگ‌ها و شیل‏‌ها در مطالعه شاخص‌های آب و هوایی: مثالی از سازند شوریجه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد رسوب شناسی، گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد ، ایران

3 استاد گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد ، ایران

چکیده

تحلیل ژئوشیمیایی اکسیدهای اصلی یکی از ابزارهای مهم در تعیین ویژگی‏‌های مختلف خاستگاه است. در این پژوهش 13 نمونۀ سیلیسی ـ آواری از سازند شوریجه شامل 7 نمونۀ ماسه‏‌سنگی و 6 نمونۀ شیلی جهت بررسی و تحلیل ژئوشیمیایی عناصر اصلی، انتخاب شد. مطالعات خاستگاه معمولاً شامل هوازدگی ناحیه منشأ، شرایط آب و هوایی دیرینه، تکتونیک منطقه، و سنگ شناسی سنگ منشأ می‏‌باشد. در این پژوهش، رفتار متفاوت ماسه‏‌سنگ‌‏ها و شیل‌هایی که دارای کانی‌های رسی هستند، در مطالعات هوازدگی ناحیۀ  منشأ و شرایط آب و هوایی قدیمه مورد تجزیه و تحلیل قرار گرفته‌‏اند. نمودارهای دوتایی و مثلثی A-CN-K برای تفسیر شرایط آب‏ و ‏هوایی دیرینه رسوبات سیلیسی ـ آواری شامل ماسه‏‌سنگ‏‌ها و شیل‌ها استفاده می‏‌شود. مطالعات انجام شده نشان داد استفاده از نمودار دوتایی برای نمونه‌‏های شیلی دربردارنده‏ کانی‌های رسی نتایج درستی را ارائه نمی‌‏دهد و برای این منظور، بهتر است از نمودار مثلثی A-CN-K استفاده شود تا از بروز خطا در تجزیه و تحلیل داده‌ها جلوگیری شود. در مورد نمونه‌‏های ماسه‌سنگی نیز بهتر است با مطالعه دقیق پتروگرافی و همچنین استفاده از تصاویر میکروسکپ الکترونی، نمونه‌‏هایی انتخاب شوند که کمترین تأثیرپذیری را از فرآیندهای دیاژنزی داشته‏ باشند.

کلیدواژه‌ها

موضوعات


افشارحرب، ع.، 1373. زمین شناسی ایران: زمین شناسی کپه‌­داغ. سازمان زمین شناسی و اکتشافات معدنی کشور، 275 ص.
امجدی، ص.، موسوی حرمی، ر.، محمودی قرائی، م .ح.، محبوبی، ا.، علیزاده کتک لاهیجانی، ح.، 1390. کانی ‏شناسی رس‌‏های موجود در رسوبات فلات قاره دریای عمان ـ ناحیه چابهار و ارتباط آن با خاستگاه رسوبات. اقیانوس شناسی، 8: 1-10.
سهندی، س.، سهیلی، م.، 1393. نقشه زمین شناسی ایران، مقیاس 1:1000000. سازمان زمین شناسی و اکتشافات معدنی کشور.
مرتضوی، م.، 1392. بررسی رخساره‏‌های سنگی، تاریخچه رسوب‌گذاری و پس از رسوب‌گذاری و چینه نگاری سکانسی سازند شوریجه (کرتاسه تحتانی) در بخش مرکزی و غربی حوضه رسوبی کپه ‏داغ. رساله دکتری، دانشگاه فردوسی مشهد، 433ص.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B., & Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148: 692-725.
Asiedu, D. K., Suzui, S., & Shibata, T., 2000. Provenance of sandstones from the Lower Cretaceous Sasayama Group, inner zone of southwest Japan. Sedimentary Geology, 131: 9-24.
Basu, A., Young, S., Suttner, L., James, W., & Mack, G., 1975. Re-evaluation of the use of undulatory extinction and crystallinity in detrital quartz for provenance interpretation. Sedimentary Petrology, 45: 873-882.
Cavazza, W., & Ingersoll, R., 2005. Detrital modes of the Ionian forearc basin fill (Oligocene-Quaternary) reflects the tectonic evolution of the Calabria-Peloritani terrane (southern Italy). Sedimentary Research, 75: 268–279.
Dinis, P.A., Garzanti, E., Hahn, A., Vermeesch, P., & Cabral-Pinto, M., 2020. Weathering indices as climate proxies: A step forward based on Congo and SW African river muds. Earth-Science Reviews, 201: 103-139.
Ehrenberg, S.N., Aagaard, P., Wilson, M. J., Fraser, A.R., & Duthie, D. M.L., 1993. Depth-dependent transformation of Kaolinite to dickit in sandstones of the Norwegian continental shelf. Clay Minerals, 28: 325-352.
Ehrmann, W., Setti, M., & Marinoni, L., 2005. Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal the paleoclimatic history. Paleogeography, Paleoclimatology, Paleoecology, 229: 187-211.
Fedo, C.M., Nesbitt, H.W., & Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for weathering conditions and provenance. Geology, 23: 921-924.
Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Press, Austin, Texas, 182p.
Galan, E., & Ferrell, R.E., 2013.Genesis of Clay Minerals. Developements in Clay Science, 5: 83-126.
Garcia, D., Ravenne, C., Marechal, B., & Moutte, J., 2004. Geochemical variability induced by entrainment sorting: quantified signais for provenance analysis. Sedimentary Geology, 171: 128-131.
Garzanti, E., & Resentini, A., 2016. Provenance control on chemical indices of weathering (Taiwan river sands). Sedimentary Geology, 336: 81-95.
Gateneh, W., 2000. Geochemistry provenance and depositional tectonic setting of the Adigrat Sandstone northern Ethiopia. Journal of African Earth Sciences, 35: 185-198.
Hassouta, L., Buatier, M., Luc Potdevin, J., & Liewig, N., 1999. Clay Diagenesis in the Sandstone Reservoir of the Ellon Field (Alwyn, North Sea). Clay and Clay Minerals, 47: 269- 285.
Jin, Z., Li, F., Cao, J., Wang, S., & Yu, J., 2006. Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting and catchment weathering. Geomorphology, 80: 147-163.
Khanehbad, M., Moussavi-Harami, R., Mahboubi, A., & Nadjafi, A., 2012. Geochemistry of Carboniferous Shales of the Sardar Formation, East Central Iran: Implication for Provenance, Paleoclimate and Paleo-oxygenation Conditions at a passive Continental Margin. Geochemistry International, 50: 777- 790.
Khazaei, E., Mahmudy Gharaie, M.H., Mahboubi, A., Moussavi-Harami, R., & Taheri, J., 2018. Petrography, Major and Trace Elemental Geochemistry of the Ordovician-Silurian Siliciclastics in North of Tabas Block, Central Iran: Implications for Provenance and Paleogeography. Journal of Sciences, Islamic Republic of Iran, 29: 129-142.
Lanson, B., Beaufort, D., Berger, G., Baradat, J., & Lacharpagne, J.C., 1996. Illitization of diagenetic kaolinite to dickite conversion series: late-stage diagenesis of the lower Permian Rotliegend sandstone reservoir, Offshore of the Netherlands. Sedimentary Research, 66: 501-518.
McLennan, S.M., Hemming, S., McDaniel, D.K., & Hanson, G.N., 1993. Geochemical approaches tosedimentation, provenance, and tectonics. In: Johnson, M.J. & Basu, A., (eds.), Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Special Papers, 284: 21–40.
Mortazavi, M., Moussavi-Harami, R., & Mahboubi, A., 2013a. Detrital Mode and Geochemistry of the Shurijeh Formation (Late Jurassic-Early Cretaceous) in the Central and Western Parts ofthe Intracontinental Kopet-Dagh Basin, NE Iran: Implications for Provenance, Tectonic Setting and Weathering Processes. Acta Geologica Sinica, 89: 1058-1080.
Mortazavi, M., Moussavi-Harami, R., Brenner, R.L., & Mahboubi, A., 2013b. Stable isotope record in pedogenic carbonates in northeast Iran: Implications for Early Cretaceous (Berriasian-Barremian) paleovegetation and paleoatmospheric P (CO2) levels. Geoderma, 212: 85-97.
Moussavi-Harami, R., Mahboubi, A., Nadjafi, M., Brenner, R.L., & Mortazavi, M., 2009. Mechanism of calcrete formation in the Lower Cretaceous (Neocomian) fluvial deposits northeastern Iran based on petrographic, geochemical data. Cretaceous Research, 305: 1146-1156.
Nelson, S.A., 2006. Clay minerals. Earth Matrials, 211pp.
Nesbitt, H.W., & Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717.
Nesbitt, H.W., & Young, G.M., 1984. Predictions of some weatheringtrends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48: 1523-1534.
Paikaray, S., Banerjee, S., Mukherji, S., 2008. Geochemistry of shalesvfrom the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonic and paleoweathering. Journal of Asian Earth Sciences, 32: 34-48.
Pettijohn, F.J., Potter, P.E., & Siever, R., 1987.Sand and Sandstone. Springer-Verlag, New York, 533 p.
Pittman, E. D., 1970. Plagioclase as an indicator of provenance in sedimentary rocks. Journal of Sedimentary Petrology, 40: 591-598.
Popeko, L.I., Smirnova, Y.N., Zaika, V.A., Sorokin, A.A., & Dril, S.I., 2020. Provenance and Tectonic Implications of sedimentary rocks of the Paleozoic Chiron Basin, Eastern Transbaikalia, Russia, Based on whole- Rock Geochemistry and Detrital Zircon U- Pb Age and Hf Isotopic Data. Minerals, 279: 1-27.
Ramazani Oomali, R., Shahriari, S., Hafezi Moghadas, N., Omidi, P., & Eftrkharnejhad, J., 2008. A model for Active tectonics in Kopet Dagh (North- East Iran). World Applied Scieences Journal, 3: 312-316.
Rollinson, H.R., 1993. Using Geochemical DATA: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, New York.352pp.
Schnyder, J., Gorin, G., Soussi, M., Baudin, F., & Decininck, J.F., 2005. Enregistrement de la variation climatique au passage Jurassique/Cretace sur la marge sud de la Tethys: mineralogy des argies et palynofacies dr la coupe du Jebal Meloussi (Tunisie Central, Formation Sidi Karlif). Bulletin de la Societe Geologique de France, 176: 171-182.
Shadan, M., & Hosseini-Barzi, M., 2013. Petrography and geochemistry of the Ab-e-Haji Formation in central Iran: implications for provenance and tectonic setting in the southern part of the Tabasblock. Revista Mexicana de Ciencias Geologicas, 30:80–95.
Stampfli, G., & Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Palentary science Letters, 196: 17-33.
Suttner, L.J., & Dutta, P.K., 1986. Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Petrology, 56: 329-345.
Worden, R.H., & Barclay, S.A., 2003.The effect of oil emplacement on diagenetic clay mineralogy: the Upper Jurassic Magnus Sandstone Member, North Sea. In: Worden, R.H., & Morad, S., (ed.), Clay Mineral Cements in Sandstones. International Association of Sedimentoligists Special Publication 34: 453-469.
Worden, R.H., & Morad, S., 2003. Clay Minerals cements in sandstones. Blackwell Publishing, 508 p.
Zimmermann, U., & Bahlburg, H., 2003. Provenance analysis and tectonic setting of Ordovician clastic deposits in the southern Puna Basin, NW Argentina. Sedimentology, 50: 1079- 1104.
CAPTCHA Image