مطالعات دیاژنتیکی و ژئوشیمیایی رخساره‌های سیلیسی آواری منتسب به اردوویسین کوه راهدار، غرب طبس

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

در این تحقیق، مطالعات پتروگرافی، ژئوشیمی عناصر اصلی و کمیاب برای تعیین خاستگاه، جایگاه تکتونیکی و شرایط آب و هوایی قدیمه ناحیه منشأ ماسه سنگهای اردوویسین کوه راهدار انجام شده است. از نظر پتروگرافی این ماسه سنگها شامل کوارتزآرنایت و ساب لیتارنایت است. همه ماسه سنگها غنی از سیلیس و فقیر از فلدسپات و خرده سنگ می‌باشند. سیمان این ماسه سنگها شامل سیمان سیلیسی رورشدی، کمی کربنات، هماتیت و کانیهای رُسی است. داده‌های پتروگرافی نشان دهنده موقعیت چرخه مجدد و کراتون برای این رسوبات است. همچنین داده‌های ژئوشیمیایی نیز بیانگر منشأ از کوارتزهای رسوبی ماسه سنگهای قدیمی‌تر است. متوسط اندیس هوازدگی شیمیایی برای این رسوبات در حدود 91 بوده که این خود بیانگر هوازدگی شدید در ناحیه منشأ است. در طی رسوب‌گذاری این ماسه سنگها شرایط آب و هوایی مرطوب حکمفرما بوده است.

کلیدواژه‌ها


شیخ الاسلامی، م. و زمانی، م.، 1378. گزارش چهارگوش زمین شناسی حلوان با مقیاس 1:100000. سازمان زمین شناسی و اکتشافات معدنی کشور.
Abdel Wahab, H.Sh., Yemane, K., & Giegengack, R., 1997. Mineralogy and geochemistry of the Pleistocene lacusterine beds in Wadi Feiran, south Sinai, Egypt: Implication for environmental and climate changes. Egypt. J. Geol., 41: 145–171.
Akarish, A.I.M., & El-Gohary, A.M., 2008. Petrography and geochemistry of lower Paleozoic sandstones, East Sinai, Egypt: Implication for provenance and tectonic setting. Journal of African Earth Science, 52: 43-54.
Aghanabati, A., 1977. Etude geologique de la region de Kalmard (W.Tabas). Geological survey of Iran, Report No.35.
Bhatia, M.R., & Crook, K.A.W., 1986. Trace element characteristics of greywackes and tectonic discrimination of sedimentary basins. Contribution to Mineralogy and Petrology, 92: 181–193.
Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91: 611–627.
Burley, S.D., & Worden, R.H., 2003. Sandstone diagenesis: Recent and Ancient. Blackwell publishing, 664p.
Chamley, H., 1990. Sedimentology. Springer-Verlag, Berlin, 285 p.
Cullers, R.L., 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51: 181-203.
Das, B.K., Al-Mikhalafi, A.S., & Kaur, P., 2006. Geochemistry of Mansar Lake sediments, Jammu, India: Implication for source-area weathering provenance and tectonic setting. Journal of Asian Earth Science, 26: 649-668.
Dabard, M. P., 1990. Lower Brioverian Formations (Upper Proterozoic) of the Armorican Massif (France): Geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sediment. Geol., 69: 45–58.
Dey, S., Rai, A.K., & Chaki, A., 2009. Palaeoweathering, composition and tectonics of provenance of the Proterozoic intracratonic Kaladgi-Badami basin, Karnataka, southern India: Evidence from sandstone petrography and geochemistry. Journal of Asian Earth Sciences, 34 (6): 703-715.
Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publication Company, Austin (Texas), 78703: 185p.
Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58: 820–829.
Goldstein, R.H., & Rossi, C., 2002. Recrystallization in quartz overgrowths. Journal of Sedimentary Research, 72: 432–440.
Hirst, D.M., 1962. The geochemistry of modern sediments from the Gulf of Paria. II. The location and distribution of trace elements. Geochim. Cosmochim. Acta, 26: 1174–1187.
Jin, Z., Li, F., Cao, J., Wang, S., & Yu, J., 2006. Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting and catchment weathering. Geomorphology, 80: 147–163.
Kim, J.C., Lee, Y., & Hisada, K., 2007. Depositional and compositional controls on sandstone diagenesis, the Tetori Group (Middle Group (Middle Jurassic-Early Cretaceous), Central Japan. Sedimentology Geology, 195: 183-202.
Lee, Y., 1999. Geochemical characteristics of the Manhang Formation (Late Carboniferous) sandstones, Korea: implication for provenance. Geosciences Journal, 3 (2): 87-94.
Marchand, A.M.E., Haszeldine, R.S., Smalley, P.C., & Macaulay, C.I., 2002. Evidence for reduced quartz-cementation rates in oil-filled sandstones. Geology, 29 (10): 915–918.
McBride, E.F., 1989. Quartz cement in sandstone. Earth Science Reviews, 26: 69-112.
McKerrow, W.S., & Scotese, C.R., 1990. Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir, 12: 1-21.
McLennan, S.M., Taylor, S.R., & Eriksson, K.A., 1983. Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. Geochim. Cosmochim. Acta, 47: 1211–1222.
Mork, M.B.E., & Moen, K., 2007. Compaction microstructures in quartz grains and quartz cement in deeply buried reservoir sandstones using combined petrography and EBSD analysis. Journal of Structural Geology, 29: 1843-1854.
Nathan, S., 1976. Geochemistry of the Greenland Group (Early Ordovician), New Zealand. New Zealand Journal of Geology and Geophysics, 19: 683-706.
Pettijohn, F.J., Potter, P.E., & Siever, R., 1987. Sand and Sandstones (2nd edition), Springer-Verlag, Berlin, 618p.
Reed, J.S., Eriksson, K.A., & Kowalewski, M., 2005. Climate, depositional and burial controls on diagenesis of Appalachian Carboniferous sandstones: qualitative and quantitative methods. Sedimentary Geology, 176: 225-246.
Rezaee, M.R., & Lemon, N.M., 1996. Influence of depositional environment on diagenesis and reservoir quality: Tirrawarra sandstone reservoir, Southern Cooper Basin, Australia. Journal of Petroleum Geology, 19 (4): 369-391.
Roser, B.P., Korsch, R.J., 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67: 119–139.
Suttner, L.J., & Dutta P.K., 1986. Alluvial sandstone composition and paleoclimate, Part I: framework mineralogy. Journal of Sedimentary Petrology, 56: 329-345.
CAPTCHA Image