تفسیر توالی دیاژنتیکی و ژئوشیمی سازند پروده (ژوراسیک میانی) در بلوک طبس، شرق ایران مرکزی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی دکتری گرایش رسوب شناسی، گروه زمین‌شناسی، دانشکده علوم، پردیس بین المللی دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

3 استادیار گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

سازند پروده از نهشته‌های ژوراسیک میانی به عنوان اولین سازند از گروه مگو پس از رخداد سیمرین میانی در بلوک طبس، شرق ایران مرکزی، برجای گذاشته شده است. به منظور تفسیر توالی دیاژنزی و تاریخچة پس از رسوب‌گذاری سنگ‌های کربناته این سازند، دو برش مزینو و کلشانه با ضخامت‌های 69 و 54.9 متر در بلوک طبس، مورد مطالعه قرار گرفته است. فرآیندهای دیاژنزی مؤثر بر این سنگ‌ها شامل میکریتی شدن، سیمانی شدن، نئومورفیسم، فشردگی، شکستگی و پرشدگی رگه‌ها، سیلیسی شدن، پیریتی شدن، دولومیتی شدن و هماتیتی شدن است. روند مثبت تغییرات نمودارهای آهن در برابر منگنز، آهن در برابر سدیم و همچنین پایین بودن نسبتSr/Mn  در نمونه­های مورد مطالعه و رابطه خطی معکوس آن با مقادیر Mn نشان­دهنده بیشترین تأثیر دیاژنز متئوریک و تا اندازه­ای دیاژنز تدفینی در این سازند است. همچنین تغییرات ((wt)1000*Sr/Ca) در برابر Mn نشانگر باز بـودن سیسـتم دیـاژنتیکی و ترسیم نمودار Sr/Na در برابر Mn، ترکیب نزدیک به نمونه‌های کربناته و آب و هوای مناطق نیمه‌گرمسیری ـ معتدل عهد حاضر است و با نقشه‌های جغرافیای دیرینه ژوراسیک میانی نیز هم‌خوانی دارد. بر اساس شواهد پتروگرافی و آنالیز عنصری، توالی پاراژنزی سنگ آهک‌های سازند پروده در چهار محیط دریایی، آب شیرین، تدفینی و بالاآمدگی تفسیر و طی سه مرحله ائوژنز، مزوژنز و تلوژنز، رسوبات را تحت تأثیر قرار داده‌اند.

کلیدواژه‌ها

موضوعات


آدابی، م. ح.، 1383. ژئوشیمی رسوبی. انتشارات آرین زمین، چاپ اول، 448 ص.
اژدری، ا.، نظری، ح.، آقانباتی، ع.، 1385. نقشه زمین‌شناسی رباط خان. مقیاس 1:100000. سازمان زمین‌شناسی و اکتشافات معدنی کشور.
واعظ جوادی، ف.، 1394. معرفی ماکروفسیل‌های گیاهی و زیست چینه‌نگاری برش کلشانه، شمال غرب طبس و تحلیل آب و هوای دیرینه. پژوهش‌های چینه نگاری و رسوب شناسی، (4) 61: 105ـ123.
Adabi, M.H., & Rao, C.P., 1991. Petrographic and geochemical evidence for original aragonite mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area, Iran. Journal of Sedimentary Geology, 72: 253-267.
Adabi, M.H., Salehi, M.A., & Ghobeishavi, A., 2010. Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Foemation), South-west Iran. Journal of Asian Earth Sciences, 39: 148-160.
Aghaei, A., Mahboubi, A., Moussavi Harami, R., Nadjafi, M., & Chakrapani, G.J., 2014. Carbonate diagenesis of the upper Jurassic successions in the west of Binalud: Eastern Alborz (NE Iran). Journal of the Geological Society of India, 83: 311-328.
Badihagh, M.T., Sajjadi, F., Farmani, T., & Uhl, D., 2019. Middle Jurassic palaeoenvironment and palaeobiogeography of the Tabas Block, Central Iran: palynological and palaeobotanical investigations. Palaeobiodiversity and Palaeoenvironments, 99 (3): 379-399.
Barrier, E., & Vrielynck, B., 2008. Palaeotectonic maps of the Middle East - tectono sedimentary - palinsspastic maps from the Late Norian to Pliocene. Paris (Commission for the Geological Map of the World; CGMW/CCGM).
Bathurst, R.G.C., 1972. Carbonate Sediments and their Diagenesis, Developments in Sedimentology. Elsevier, Amsterdam, 658 p.
Boggs, S.J.R., & Krinsley, D., 2006. Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks. Cambridge University Press, 177 p.
Brand, U., & Veizer, J., 1980. Chemical diagenesis of the multi component carbonate system-1: trace elements. Journal of Sedimentary Petrology, 50: 1219-1236.
Dickson, J.A.D., 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology, 36: 491-505.
Flugel, E., 2010. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application. Springer- Berlin, 984 p.
Fu, Q., Hu, S., Xu, Z., Zhao, W., Shi, S., & Zeng, H., 2020. Depositional and diagenetic controls on deeply buried Cambrian carbonate reservoirs: Longwangmiao Formation in the Moxi - Gaoshiti area, Sichuan Basin, southwestern China. Marine and Petroleum Geology, 117: 104318.
Garzanti, E., Andò, S., Limonta, M., Fielding, L., & Najman, Y., 2018. Diagenetic control on mineralogical suites in sand, silt, and mud (Cenozoic Nile Delta): Implications for provenance reconstructions. Earth Science Reviews, 185: 122-139.
Halley, R.B., & Harris, P.M., 1979. Fresh water cementation of a 1,000-year-old oolite. Journal of Sedimentary Petrology, 49: 969-988.
Higgins, J.A., Blättler, C.L., Lundstrom, E.A., Santiago-Ramos, D.P., Akhtar, A.A., Crüger Ahm, A.S., Bialik, O., Holmden, C., Bradbury, H., Murray, S.T., & Swart, P.K., 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochimica et Cosmochimica Acta, 220: 512-534.
Jones, D.S., Brothers, R.W., Crüger Ahm, A.S., Slater, N., Higgins, J. H., & Fike, D. A., 2020. Sea level, carbonate mineralogy, and early diagenesis controlled δ13C records in Upper Ordovician carbonates. Geology, 48 (2): 194-199.
Jørgensen, B.B., 1977. Bacterial sulfate reduction within reduced micro-niches of oxidised marine sediments. Marine Biology, 41: 7-17.
Knoerich, A.C., & Mutti, M., 2006. Missing aragonitic biota and the diagenetic evolution of heterozoan carbonates: A case study from the Oligo-Miocene of the central Mediterranean. Journal of Sedimentary Research, 76 (5): 871-888.
Koch, R., & Ogorelec, B. 1990. Biogenic Constituents, Cement types and sedimentary fabrics. In: Heling, D., Rothe, P., Förstner, U., & Stoffers, P., (eds.), Sediments and Environmental Geochemistry: Selected Aspects and Case Histories. Springer, Berlin, Heidelberg, 95-123.
Koch, R., Bucur, L.I., Kirmaci, M.Z., Eren, M., & Tasli, K., 2008. Upper Jurassic and Lower Cretaceous carbonate rocks of the Berdiga Limestone: Sedimentation on an onbound platform with volcanic and episodic siliciclastic influx. Biostratigraphy, facies and diagenesis (Kircaova, Kale-Gümü¸shane area; NE-Turkey). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 247 (1): 23-61.
Lohmann, K.C., 1988. Geochemical patterns of meteoric diagenetic systems and their application to paleokarst. In: James, N.P., & Choquette, P.W., (eds.), Paleokarst. Springer-Verlag, New York, 58-80.
Longman, M.W., 1980. Carbonate diagenetic textures from nearsurface diagenetic environments. American Association of Petroleum Geology Bulletin, 64: 461-487.
Machel, H.G., 2000. Application of cathodoluminescence to carbonate diagenesis. In: Pagel, M., Barbin, V., Blanc, P., & Ohnenstetter, D., (eds.), Cathodoluminescence in Geosciences. Springer-Verlag, Berlin, 271-301.
Moore, C.H., & Wade, W.J., 2013. Carbonate Reservoirs, Porosity and Diagenesis in a Sequence Stratigraphic Framework (2nd edition). Developments in Sedimentology, Elsevier, New York, 347 p.
Morad, S., Ketzer, J.M., & De Ros, L.F., 2013. Linking Diagenesis to Sequence Stratigraphy: An Integrated Tool for Understanding and Predicting Reservoir Quality Distribution. In: Morad, S., Ketzer, J.M., & De Ros, L.F., (eds.), Linking Diagenesis to Sequence Stratigraphy. Wiely Blackwell, 522 p.
Mucci, A., 1988. Manganese uptake during calcite precipitation from seawater: conditions leading to the formation of a pseudokatnahorite. Geochimica et Cosmochimica Acta, 52: 1859-1868.
Nader, F.H., 2017. Multi-Scale Quantitative Diagenesis and Impacts on Heterogeneity of Carbonate Reservoir Rocks. Springer International Publishing, 146 p.
Nascimento, G.S., Eglinton, T.I., Haghipour, N., Albuquerque, A.L., Bahniuk, A., McKenzie, J.A., & Vasconcelos, C., 2019. Oceanographic and sedimentological influences on carbonate geochemistry and mineralogy in hypersaline coastal lagoons, Rio de Janeiro state, Brazil. Limnology and Oceanography, 64 (6): 2605-2620.
Oliveira, R.S., & Truckenbrodt, W., 2019. Provenance and diagenesis of Guamá Sandstone, northeastern Pará, Brazil: A Silurian link between the Amazonas and Parnaíba basins. Journal of South American Earth Sciences, 90: 265-281.
Oti, M., & Müller, G., 1985. Textural and mineralogical changes in coralline algae during meteoric diagenesis: an experimental approach. Neues Jahrbuch für Mineralogie, Abhandlungen, 151 (2): 163-195.
Paris, G., Bartolini, A., Donnadieu, Y., Beaumont, V., & Gaillardet, J., 2010. Investigating boron isotopes in a middle Jurassic micritic sequence: Primary vs. diagenetic signal. Chemical Geology, 275: 117-126.
Pingitore, N.E., 1978. The behavior of Zn and Mn during carbonate diagenesis theory and application. Journal of Petroleum Geology, 48: 799-814.
Pingitore, N.E., Eastman, M.P., Sandidge M., Oden, K., & Freiha, B., 1988. The coprecipitation of manganese (ІІ) with calcite, an experimental study. Marine Chemistry, 25 (2): 107-120.
Rao, C.P., & Adabi, M.H., 1992. Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia. Marine Geology, 103: 249-272.
Rao, C.P., & Amini, Z.Z., 1995. Faunal relationship to grain-size, mineralogy and geochemistry in recent temperate shelf carbonates, western Tasmania, Australia. Carbonates and Evaporites, 10: 114-123.
Rao, C.P., 1991. Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia. Carbonates and Evaporites, 6: 83-106.
Ruttner, A., Nabavi, M.H., Hajian, J., Aghanabati, A., 1994. Geological map of Shirgesht, scale 1:100,000. Geological Survey of Iran.
Sahraeyan, M., Bahrami, M., Hooshmand, M., Ghazi, S., & Al-Juboury, A.I., 2013. Sedimentary facies and diagenetic features of the Early Cretaceous Fahliyan Formation in the Zagros Fold-Thrust Belt, Iran. Journal of African Earth Sciences, 87: 59-70.
Sanders, D., 2001. Burrow-mediated carbonate dissolution in rudist biostromes (Aurisina, Italy): implications fortaphonomy in tropical, shallow subtidal arbonate environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 168: 39-74.
Scholle, P.A., & Ulmer Scholle, D.S., 2006. A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis. American Association of Petroleum Geology, Tulasa, 459 p.
Schülke, I., & Popp, A., 2005. Microfacies development, sea-level change, and conodont stratigraphy of Famennian mid-to deep platform deposits of the Beringhauser Tunnel section (Rheinisches Schiefergebirge, Germany). Facies, 50: 647-664.
Sengör, A.M.C., 1990. A new model for the late Palaeozoic-Mesozoic tectonic evolution of Iran and implications for Oman. Geological Society of London, Special Publications, 49 (1): 797-831.
Seyed-Emami, K., Fürsich, F.T., & Wilmsen, M., 2004. Documentation and significance of tectonic events in the Northern Tabas block (East-Central Iran) during the Middle and Late Jurassic. RivistaItaliana di Paleontologia e Stratigrafia, 110 (1): 163-171.
Shen, A., Hu, A., Pan, L., & She, M., 2017. Origin and distribution of grain dolostone reservoirs in the Cambrian Longwangmiao Formation, Sichuan Basin, China. Acta Geologica Sinica, English Edition, 91 (1): 204-218.
Steuber, T., & Veizer, J., 2002. Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation. Geology, 30 (12): 1123-1126.
Stocklin, J., Eftekhar-Nezhad, J., & Hushmand-Zadeh, A., 1965. Geology of the Shotori Range (Tabas area, East Iran). Geological Survey of Iran, 3: 69 p.
Swart, P.K., 2015. The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology, 62: 1233-1304.
Tribovillard, N., Sansjofre, P., Ader, M., Trentesaux, A., Averbuch, O., & Barbecot, F., 2012. Early diagenetic carbonate bed formation at the sediment–water interface triggered by synsedimentary faults. Chemical Geology, 300: 1-13.
Trombetta, M.C., Guadagnin, F., Kumaira, S., Caron, F., & Gonçalves, G., 2019. Composition and diagenesis of Neoproterozoic Guaritas Group sandstones in the Minas do Camaquã fault zone, Camaquã Basin. Journal of South American Earth Sciences, 90: 1-11.
Tucker, M.E., & Wright, V.P., 1990. Carbonate sedimentology. Blackwell, Oxford, 482 p.
Veizer, J., & Demovic, R., 1973. Environmental and climatic controlled fractionation of elements in the Mesozoic carbonate sequences of the western Carpathians. Journal of Sedimentary Research, 43 (1): 258-271.
Wierzbowski, H., & Joachimiski, M., 2007. Reconstrnction of late Bajocian-Bathonian marine palaeoenvironments using carbon and oxygen isotope ratios of calcareous fossils from the Polish Jura Chain (Central Poland). Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 523-540.
Wilmsen, M., Fürsich, F.T., Seyed-Emami, K., & Majidifard, M.R., 2009. An overview of the stratigraphy and facies development of the Jurassic System on the Tabas Block, east-central Iran. In: Brunet, M.F., Wilmsen, M., & Granath, J.W., (eds.), South Caspian to Central Iran Basins. Geological Society of London, Special Publications, 312 (1): 323-343.
Wilson, J.L., 1975. Carbonate facies in geologic history. Springer, New York, 471 p.
Winefield, P.R., Nelsion, C.S., & Hodder, A.P.W., 1996. Discriminating temperate carbonates and their diagenetic environments using bulk elemental geochemistry: a reconnaissance study based on New Zealand Cenozoic limestones. Carbonates and Evaporites, 11: 19-31.
Yahya Sheibani, V., Moussavi-Harami, R., Mahboubi, A., & Khanehbad, M., 2020. Depositional environment and sequence stratigraphy of siliciclastic - carbonate deposits of Parvadeh Formation (Middle Jurassic) in Tabas block, East Central of Iran. Geopersia, 10 (2): 305-332.
CAPTCHA Image