The effect of sedimentary units on composition and quality of water: an example from the Kardeh catchment, northeast of Mashhad, Iran

Document Type : مقالات پژوهشی

Authors

1 Islamic Azad University- Mashhad Branch

2 Mashhad Branch, Islamic Azad University

Abstract

Introduction
Kardeh catchment is a part of the Kopet-Dagh zone and contains a variety of lithological composition. Mozduran and Shurijeh formations, Neogene and recent deposits form most of the outcrops in this area (Nabavieh, 1998). In this study, considering the importance of Kardeh catchment area as sources of water for the underground and surface water resources for drinking in the west of Mashhad, we have analyzed water samples from each sub-catchment and conducted chemical analysis of rocks. The impact of harmful elements in the river water, resulted from lithological erosion, in this basin are discussed. In addition, the water quality of the river in terms of agricultural use, drinking, and industry usage is also investigated (Li & Zhang, 2008; Han et al, 2010).
 
Materials and Methods
In this study, 17 water samples and 9 rock samples were collected for analysis. For this reason, temperature, pH, electrical conductivity (EC), total dissolved solids (TDS), concentration and absorption of some ions have been measured. Based on the results, in order to determine water quality for drinking, agriculture and industrial usage, we have made comparisons with the World Health Organization drinking water standards and data from the Standards and Industrial Research Institute of Iran (Schuler, Wilcox and Piper diagrams). Rock samples have been analyzed by ICP method. Two polished thin sections were studied to determine the composition of mineral components, using the Scanning Electron Microscope (SEM) equipped with EDS.
 
Discussion
Based on the analysis carried out in the Kardeh catchment, the maximum TDS is 863.35 mg/l in the Al area, and the minimum is 571.95 mg/l in Karim-Abad. The maximum electrical conductivity (EC) is 557 microzimens/sec in the Al area, and the minimum EC is 369 microzimens/sec in Karim-Abad. The highest temperature of 24.6°C is related to the lake, and the minimum temperature measured is 10.3°C in the Mareshk area. The results indicate that among cations, magnesium and potassium have the lowest concentration, whereas sodium and calcium have the highest. Among anions, bicarbonate has the maximum concentration, and sulfate the minimum. Petrographic studies indicate that carbonate and sandstone are the main types of rocks in the study area. Carbonate facies are mainly dolomite, whereas sandstone facies are sublitharenite and feldspathic litharenite with silica, carbonate and iron oxide cements. Based on ICP analysis, aluminum, calcium, iron, potassium, magnesium, and sodium are the main elements in the rock samples. Mozduran (carbonate strata) and Shurijeh (siliciclastic strata) formations and also evaporative units are the probable sources of water-soluble ions (Kazemi et al., 1395).
Based on the results of the analysis of water samples, the water is not suitable for industrial usage due to corrosion and precipitation of chemicals. Also, according to the Schuler diagram, some water samples are not suitable for drinking. On the other hand, according to the Piper diagram (Piper, 1944), the major water samples have good quality and contain sulfate, chloride, and calcium as main ions. Thus, according to the Wilcox diagram (Wilcox 1995), the major water samples are in class C2S1. So, based on the presence of slight salt in the water, therefore it is suitable for agricultural use.
 
Conclusion
The main ions in the Kardeh water samples are sodium, calcium, magnesium, iron, sulfate, and carbonate. Based on the analytical results, for drinking all samples are moderate to good, and are classified in class C2S1 of the Wilcox diagram. Although these samples are acceptable for agriculture, they are unacceptable for industrial usage. Finally, based on the Piper diagram, the quality of water samples are in sulfate and chloride groups. In the Kardeh catchment, the probable source of ions in water samples could be carbonate and siliciclastic rocks as well as Neogene and recent deposits.
 
Keywords: Kardeh catchment; Khorasan Razavi; lithology; water quality.
 
References
Han, G., Tang, Y., & Xu, Z., 2010. Fluvial geochemistry of rivers draining Karst terrain in southwest China. Journal of Asian Earth Sciences, 38: 65-75.
Kazemi N., Poursoltani M.R., Fazel Valipour M.E. 2016. The study of Kardeh catchment groundwater, north of Mashhad, Iran, The Second Conference on Environmental Science and Engineering Technologies, Tehran University, 1-10 (in Persian).
Li, S., & Zhang, Q., 2008. Geochemistry of the Han River Basin China, 1: Spatial distribution of major ion compositions and their controlling factors. Applied Geochemistry, 23: 3535-3544.
Nabavieh, S.M., 1998. Geological map of Kalat, 1:100000, Geological Survey of Iran.
Piper, A.M., 1944. A graphic procedure in the geochemical interpretation of water analysis. Trans. American Geophysical Union, 25 (6): 914-928.
Wilcox, L.W., 1995. Classification and Use of Irrigation Water, U.S. Department of Agriculture, Washington, Circular, 969 p.

Keywords


پورسلطانی، م. ر. موسوی حرمی، ر. 1386. مطالعات آبشناسی حوضه آبریز سنگرد در سبزوار، فصلنامه زمین شناسی کاربردی، شماره2: 110-118.
پورسلطانی، م.ر. و قطبی راوندی، م.ر. 1393. تاریخچه دیاژنز ماسه سنگهای کامبرین زیرین، در رخنمون گزوئیه، ایران مرکزی: نشریه پژوهشهای چینه نگاری و رسوب شناسی، 4: 103-125.
حیدر زاده، م. محمد زاده، ح. 1391. مطالعه مکانی و فصلی تغییرات هیدروشیمیایی و بررسی عوامل موثر بر کیفیت آب رودخانه کارده (شمال شهر مشهد). نشریه آب و خاک (علوم و صنایع کشاورزی)، 91 -9: 1170-1161.
کاظمی، ن. پورسلطانی م.ر. فاضل ولی پور م.ا. 1395. مطالعه آبهای سطحی حوضه آبریز کارده، شمال مشهد، ایران، دومین کنفرانس علوم و مهندسی و فناوری های محیط زیست، دانشگاه تهران
مدیریت آبخیزداری سازمان جهاد کشاورزی خراسان، 1383.گزارش فرسایش و رسوب حوضه آبریز سیج و آل (منتشر نشده)
مدیریت منابع طبیعی، اداره مطالعات و هماهنگی ، 1373. مطالعات هیدرولوژی حوضه سد کارده، طرح (منتشر نشده)
موسسه استاندارد و تحقیقات صنعتی ایران - استاندارد ملی ایران 1053 تجدید نظر پنجم آب آشامیدنی- ویژگی های فیزیکی و شیمیایی (http://www.environment-lab.ir/ 2016-11-02T09:28:48Z)
De Ros L.F., Morad S., and Al-Aasm I.S. 1997. Diagenesis of siliciclastic and volcaniclastic sediments in the Cretaceous and Miocene sequences of the NW African margin (DSDP Leg 47A, Site 397): Sedimentary Geology, 112: 137-156.
Folk R.L. 1980. Petrology of Sedimentary Rocks. Hemphill Publishing, Austin, Texas, USA, 184 pp.
Han G., Tang Y., and Xu Z. 2010. Fluvial geochemistry of rivers draining Karst terrain in southwest China. Journal of Asian earth sciences, 38: 65-75.
Ketzer J.M., De Ross L.F., and Norberto D. 2005. Kaolinitic meniscus bridges as an indicator of early diagenesis in Nubian sandstone, Sinai, Egypt – discussion: Sedimentology, 52: 3213-217.
Li S., and Zhang Q. 2008. Geochemistry of the Han river basin China,1: Spatial distribution of major ion compositions and their controlling factors. Applied geochemistry, 23: 3535-3544.
Liu K.W. 2002. Deep-burial diagenesis of the siliciclastic Ordovician Natal Group, South Africa: Sedimentary Geology, 154: 177-189.
Mansurbeg H., Morada S., Salemc A., Marfild R., El-ghlie M.A.K ., Nystuenf J.P. Cajad M.A., Amorosig A., Garciah D., and La Iglesia A. 2008. Diagenesis and reservoir quality evolution of palaeocene deep-water,marine sandstones, the Shetland-Faroes Basin, British continental shelf: Marine and Petroleum Geology,. 25: 514–543.
Mcbride E.F., Land L.S., and Mack L.E., 1987. Diagenesis, Norphler Formation (Upper Jurassic), Rankin County, Mississippi, and Mobile County, Alabama: American Association of Petroleum Geologists, Bulletin, 71: 1019-1034.
Morad S., and Aldaham A.A. 1986. Diagenetic alteration of detrital biotite in Protrozoic sedimentary rocks from Sweden: Sedimentary Geology, 47: 95-107.
Nabavieh S.M. 1998. Geological map of Kalat, 1:100000, Geological Survey of Iran.
Piper A.M. 1944. A graphic procedure in the geochemical interpretation of water analysis. Trans. American Geophysical Union 25 (6): 914-928.
Poursoltani M.R., and Gibling M.R. 2011. Composition, porosity and reservoir potential of the Middle Jurassic Kashafrud Formation, northeast Iran: Marine and Petrolume Geology, 28: 1094-1110.
Reed J.S., Eriksson K.A., and Kowalewski M. 2005. Climatic, depositional and burial controls on diagenesis of Appalachian Carboniferous sandstones: qualitative and quantitative methods: Sedimentary Geology, 176: 225-246.
Sibley D.F., Greeg J.M., 1987. Classification of dolomite rock textures. J Sediment Petrol 57: 967–975.
Siebert R.M., Moncure G.K., and Lanhann R.W. 1984. A theory of framework grain dissolution in sandstones, In: Clastic Diagenesis (Ed, D. A. Mcdonald and R. C. Surdan). Tulsa, Oklahama, U.S.A.: American Association of Petroleum Geologists, Memoir, 37: 163-176.
Uysal I.T., Golding S.D., and Glikson M. 2000. Petrographic and isotope constraints on the origin of authigenic carbonate minerals and the associated fluid evolution in Late Permian coal measures, Bowen Basin (Queensland), Australia: Sedimentary Geology, 136: 189-206.
Wilcox L.W. 1995. Classification and Use of Irrigation Water, U.S. Department of Agriculture, Washington, Circular, 969 pp.
CAPTCHA Image