The Ichnoassemblages and their environmental Importance in Geirud Formation, SW Shahroud and north Shahmirad, Central Alborz

Document Type : مقالات پژوهشی

Authors

1 Ferdowsi university of mashhad

2 Ferdowsi University of Mashhad

3 Kharazmi University

Abstract

Introduction
The silisiclastic-carbonate sediments of the Geirud formation (Upper Devonian) are deposited in the Central Alborz Basin, northern Iran. Generally, these sediments display four depositional systems as follow: fluvial (alternation of red-purple shale, sandstone and conglomerate), estuary (thick-bedded, white sandstone with bi- to multiple-directional planar cross bed and herringbone), shoreface (alternation of thin to thick-bedded sandstone with trough and planar cross bed and HCS and gray-black, fissile shale) and shallow shelf or offshore (fossiliferous limestone with HCS and tempestite and black, fissil shale) that indicate a deepening up-ward trend. A prevailed stressful and unsuitable condition with respect to salinity led to preservation of the ichnoassemblages with low diversity and small size of the trace fossils in the studied sediments (Gingras et al., 2008). The studied sediments indicate remarkable changes in sedimentation rate, water circulation and salinity level during the Late Devonian time. Ichnological analysis has become a valuable tool in basin analysis, especially for recognizing and interpreting genetically related sedimentary packages (e.g., Tovar et al., 2007; Sharafi et al., 2012 & 2014). The primary controls on the distribution of different burrowing behaviors and lifestyle of the existing fauna and the trace markers in the marine realm are nutrient supply, hydrodynamic energy, salinity, sedimentation rate, oxygen level, water turbidity (Seilacher,1967; Bromley & Ekdale, 1984; Pemberton & Wightman, 1992; MacEachern & Burton, 2000; Gingrass et al., 2008, 2012; Sharafi et al., 2014).
 
Discussion
The Alborz Mountains with a E-W trend is one of the structural zones in the northern Iran (Stöcklin, 1968). This structural zone is sub-divided into the east, central, and west parts and the study area is located in the central part. The Geirud Formation crops out at the Dehmolla, and the Shahmirzad sections, geographical coordinates are 36º 21' 53'' N and 54º 45' 28'' E and 35º 46' 12'' N and 53º 19' 25'' E, respectively. In the studied areas, the Geirud Formation disconformably overlies the marine shale of the Milla Formation (Ordovician) and is conformably overlain by the black limestone-shale of the Mobarak Formation (Lower Carboniferous). Various paleontological studies on brachiopods (Bozorgnia, 1964), Palynomorphs (Ghavidel-Syooki, 1995) and Goniatites (Dashtban, 1995) indicate the age of the Geirud Formation is Late Devonian (Frasnian–Famennian).
Tow stratigraphic sections measured in the Alborz mountain north of Iran for the purpose of this research. Tow hundreds and Eighty thin sections were examined to identify fine-scale sedimentological and textural characteristics such as grain size and sedimentary structures that are recorded in the studied successions. Both sedimentological and trace fossils features were examined on fresh and weathered surfaces in the field. Degree of bioturbation is assessed according to Taylor and Goldring (1993) and is done with using of comparative charts. The bioturbation index (BI) aims to relate the degree of bioturbation to the preservation of primary bedding features (Taylor & Gawthorpe, 1993). In this scheme, a BI is defined, ranging from 0 (no bioturbation) to 6 (complete bioturbation, total biogenic homogenization of sediments).
 
Results and Conclusion
Nine ichnoassemblages are identified in the studied successions that indicate considerable environmental changes (e.g. salinity, nutrient supply, hydrodynamic energy, sedimentation rate, oxygen level) within a generally deepening up-ward sequence from fluvial-estuary depositional setting to open marine environment (shoreface, shallow shelf). Alternation of the red-purple, thick-bedded sandstone-conglomerate and red shale of the fluvial system in the lower part of the formation with low diversity of vertical trace fossils and low bioturbation index (B.I.= 0-1) (Skolithos-Arenicolites ichnoassemblage) indicate high sedimentation rate of the silisiclastic sediments in a high energy and agitated setting with unstable and mobile substrate. White, medium-thick bedded sandstone in the lower part of the successions with a few shell fragments and Skolithos-Arenicolites and Thalassinoides-Rhiocorallium ichnoassemblages displayed by mainly vertical burrow elements and low B.I. (1-4) indicate high energy, unstable substrate and periodically water circulation in a beach setting with high sedimentation rate. In the middle part of the studied successions thin-medium bedded fossiliferous sandstone with planar and trough cross beds and HCS and Thalassinoides-Rhizocorallium-Palaeophycus, Arenicolites-Thalassinoides and Arenicolites ichnoassemblages with medium B.I. (3-4) and a mixed vertical (suspension feeders) and horizontal (deposit feeders) burrow elements, display the various life style of the trace markers from suspension feeding during high energy phase with high sedimentation rate and deposit feeding during low energy periods with low sedimentation rate and more stable substrate, in a shoreface setting. Diversity and abundance of the trace fossils and shells in these sediments indicate a suitable marine condition with respect to salinity, light and water circulation. The High diversity and abundance of the trace fossils and the skeletal elements of the Arenicolites-Diplocraterion, Thalassinoides-Rhizocorallium-Palaeophycus, Arenicolites-Protovirgularia and Protovirgularia ichnoassemblages within the black, thin bedded fossiliferous limestone in the upper part of the formation display establishment a fully marine condition (e.g., light, water circulation, and salinity) along with a decrease in hydrodynamic level and turbulence in a shelf setting
 
Keyword: Geirud Formation; ichnoassemblages; ichnofacies; shoreface; shelf; estuary.
 
Reference
Aguirre, J., Gibert, J.M. & Puga-Bernabéu, A., 2010. Proximal–distal ichnofabric changes in a siliciclastic shelf, Early Pliocene, Guadalquivir Basin, southwest Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 291: 328–337.
Buatois, L.A., Mangano, M.G., Alissa, A., & Carr, T.R., 2002. Sequence stratigraphic and sedimentologic significance of biogenic structures from a Late Paleozoic marginal- to open-marine reservoir, Morrow Sandstone, subsurface of southwest Kansas, USA. Sedimentary Geology, 152: 99-132.
Dalrymple, R.W., & Choi, K., 2007. Morphology and facies trends through the fluvial marine- transition in tide-dominated depositional systems: A schematic framework for environmental and sequence stratigraphic interpretation. Earth Science Reviews, 81: 135-174.
Gingras, M.K., MacEachern, J.A., & Dashtgard, S.E., 2012. The potential of trace fossils as tidal indicators in bays and estuaries. In: Modern and ancient depositional systems: perspectives, models and signatures (Eds. S.G. Longhitano, D. Mellere and R.B. Ainsworth). Sedimentary Geology, Special Issue 279: 97-106.
Gingras, M.K., Pemberton, S.G., MacEachern, J.A., & Bann, K.L., 2008. A conceptual framework for the application of trace fossils. In: MacEachern, J.A.,Bann, K.L., Gingras, M.K., & Pemberton, S.G. (eds.), Applied Ichnology. SEPM Short Course Notes, 52: 1–27.
Sharafi, M., Mahboubi, A., Moussavi-Harami, R., Ashuri, M., & Rahimi, B., 2013. Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Aitamir Formation (Albian–Cenomanian), Kopet-Dagh Basin, northeastern Iran. Journal of Asian Earth Sciences, 67-68: 171-186.
Sharafi, M.,   Mahboubi, A., Moussavi-Harami, R., Mosaddegh, H., & Gharaie, M.H.M., 2014. Trace fossils analysis of fluvial to open marine transitional sediments: Example from the Upper Devonian (Geirud Formation), Central Alborz, Iran. Palaeoworld, 23: 50–68.

Keywords


منابع
آقانباتی، ع.، حامدی، ا.ر.، 1373. نقشه زمین شناسی چهار گوش1:250000 سمنان. سازمان زمین شناسی و اکتشافات معدنی کشور.
دشتبان، ح.، 1373. گونیاتیت های دونین بالایی (فامنین) از البرز مرکزی. فصلنامه علوم زمین، 14: 43-36.
سعیدی، ا.، اکبر پور، م.ر.،1371. نقشه زمین شناسی چهار گوش 1:100000 کیاسر. سازمان زمین شناسی و اکتشافات معدنی کشور.
شرفی، م.، 1393. چینه نگاری سکانسی و دیاژنز سازند جیرود (دونین بالایی) در البرز مرکزی. پایان نامه دکتری، دانشگاه فردوسی مشهد، 403 ص.
شرفی، م.، محبوبی، ا.، موسوی حرمی، ر.، نجفی، م.، 1390. کاربرد لایه های پرفسیل در تفسیر چینه نگاری سکانسی سازند آیتامیر در ناودیس های شیخ و بی بهره- باختر کپه داغ. فصلنامه زمین شناسی ایران، 17: 47-31.
شرفی، م.، عاشوری، م.، محبوبی، ا.، موسوی حرمی، ر.، نجفی، م.، 1388. چینه نگاری سکانسی سازند آیتامیر (آلبین- سنومانین) در ناودیس های شیخ و بی بهره غرب حوضه رسوبی کپه داغ. مجله علوم دانشگاه تهران، 35: 211-201.
لاسمی، ی.، قوچی اصل، ا.، امین رسولی، ه.، 1383. نهشته های طوفانی آواری و کربناته سازند جیرود در ناحیه تویه ـ دروار (جنوب باختر دامغان). هشتمین همایش انجمن زمین شناسی ایران، 183-189.
محمد خانی، ح.، و خزایی، م.، 1384. محیط رسوبی و چینه نگاری سکانسی سازند جیرود در دره مبارک آباد و شمال شرق روستای زایگون، (البرز مرکزی). بیست و چهارمین گردهمایی علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور، 207-212.
هاشمی، س.ح.، و تابع، ف.، 1384. پالینولوژی سازند جیرود در برش چینه شناسی غرب گرمابدر، شمال شرق تهران. نهمین همایش انجمن زمین شناسی ایران، 295-308.
Aguirre, J., Gibert, J.M., & Puga-Bernabeu, A., 2010. Proximal–distal ichnofabric changes in a siliciclastic shelf, Early Pliocene, Guadalquivir Basin, southwest Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 291: 328–337.
Bhattacharya, H.N., & Bhattacharya, B., 2006. A Permo-Carboniferous tide-storm interactive system: Talchir formation, Raniganj Basin, India. Journal of Asian Earth Sciences, 27: 303-311.
Bhattacharya, H.N., & Bhattacharya, B., 2010. Soft-sediment deformation structures from an ice-marginal storm-tide interactive system, Permo-Carboniferous Talchir Formation, Talchir Coalbasin, India. Sedimentary Geology, 223: 380-389.
Bozorgnia, F., 1964. Microfacies and microorganisms of Paleozoic through Tertiary sediments of some parts of Iran. With collaboration of S. Banafti. National Iranian Oil Company Tehran-Iran, 1-22, 158 p.
Bromley, R.G., & Ekdale, A.A., 1984. Trace fossil preservation in flint in the European chalk. Journal of Paleontology, 58: 298-311.
Buatois, L.A., Mangano, M.G., Alissa, A., & Carr, T.R., 2002. Sequence stratigraphic and sedimentologic significance of biogenic structures from a Late Paleozoic marginal- to open-marine reservoir, Morrow Sandstone, subsurface of southwest Kansas, USA. Sedimentary Geology, 152: 99-132.
Dalrymple, R.W., & Choi, K., 2007. Morphology and facies trends through the fluvial marine- transition in tide-dominated depositional systems: A schematic framework for environmental and sequence stratigraphic interpretation. Earth Science Reviews, 81: 135-174.
Dashtgard, S.E., MacEachern, J.A., Frey, S.E., & Gingras, M.K., 2010. Tidal effects on the shoreface: Towards a conceptual framework. Sedimentary Geology, 279: 42-61.
Fabuel-Perez, I., Redfern, J., & Hodgetts, D., 2009. Sedimentology of an intra-montane rift-controlled fluvial dominated succession: The Upper Triassic Oukaimeden Sandstone Formation, Central High Atlas, Morocco. Sedimentary Geology, 218: 103-140.
Frey, R.W., & Howard, J.D., 1986. Mesotidal estuary sequences: A perspective from the Georgia Bight. Journal of Sedimentary Petrology, 56: 911-924.
Fröhlich, S., Petitpierre, L., Redfern, J., Grech, P., Bodin, S., & Lang, S., 2010. Sedimentological and sequence stratigraphic analysis of Carboniferous deposits in western Libya: Recording the sedimentary response of the northern Gondwana margin to climate and sea-level changes. Journal of African Earth Sciences, 57: 279-296.
Fursich, F.T., 1998. Environmental distribution of trace fossils in the Jurassic of Kachchh (Western India). Facies, 39: 46–53.
Fursich, F.T., & Pandey, D.K., 2003. Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Upper Jurassic–Lower Cretaceous of Kachchh, western India. Palaeogeography, Palaeoclimatology, Palaeoecology, 193: 285–309.
Fursich, F.T., Werner, W., & Schneider, S., 2009. Autochthonous to parautochthonous bivalve concentrations within transgressive marginal marine strata of the Upper Jurassic of Portugal. Palaeobiology, Palaeoenvironment, 89: 161–190.
Ghavidel-Syooki, M., 1995. Palynostratigraphy and palaeogeography of a Palaeozoic sequence in the Hassanakdar area, Central Alborz Range, northern Iran. Review of Palaeobotany and Palynology, 86: 91-109.
Gingras, M.K., MacEachern, J.A., & Dashtgard, S.E., 2012. The potential of trace fossils as tidal indicators in bays and estuaries. In: Modern and ancient depositional systems: perspectives, models and signatures (Eds. S.G. Longhitano, D. Mellere and R.B. Ainsworth). Sedimentary Geology, Special Issue, 279: 97-106.
Gingras, M.K., Pemberton, S.G., MacEachern, J.A., & Bann, K.L., 2008. A conceptual framework for the application of trace fossils. In: MacEachern, J.A.,Bann, K.L., Gingras, M.K., & Pemberton, S.G. (eds.), Applied Ichnology. SEPM Short Course Notes, 52: 1–27.
Longhitano, S.G., Mellere, D., Steel, R.J., & Ainsworth, R.B., 2012. Tidal depositional systems in the rock record: A review and new insights. Sedimentary Geology, 279: 2–22.
MacEachern, J.A., & Bann, K.L., 2008. The role of ichnology in refining shallow marine facies models. In: Hampson, G.J., Steel, R.J., Burgess, P.B., & Dalrymple, R.W. (eds.), Recent Advances in Models of Siliciclastic Shallow-Marine Stratigraphy, 90. Society for Sedimentary Geology (SEPM), Tulsa, USA: 73-116.
MacEachern, J.A., & Burton, J.A., 2000. Firmground Zoophycos in the Lower Cretaceous Viking Formation, Alberta: a distal expression of the Glossifungites ichnofacies. Palaios, 15: 387–398.
Malpas, J.A., Gawthorpe, R.L., Pollard, J.E., & Sharp, I.R., 2005. Ichnofabric analysis of the shallow marine Nukhul Formation (Miocene), Suez Rift, Egypt: implications for depositional processes and sequence stratigraphic evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 215: 239–264.
Miall, A.D., 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer, Berlin, 582 p.
Nouidar, M., & Chellaï, E.H., 2001. Facies and sequence stratigraphy of an estuarine incised-valley fill: Lower Aptian Bouzergoun Formation, Agadir Basin, Morocco. Cretaceous Research, 22: 93-104.
Parras, A., & Casadio, S., 2005. Taphonomy and sequence stratigraphic significance of oyster-dominated concentrations from the San Julian formation, Oligocene of Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 217: 47–66.
Pemberton, S.G., & Wightman, D.M., 1992. Ichnological characteristics of brackish water deposits. In: Pemberton, S.G. (ed.), Applications of Ichnology to Petroleum Exploration. SEPM Core Workshop Notes, 17: 141–169.
Pollard, J.E., Goldring, R., & Buck, S.G., 1993. Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretations. Journal of the Geological Society, 150: 149–164.
Rudriguez-Tovar, F.J., Perez-Valera, F., & Perez-Lopez, A., 2007. Ichnological analysis in high-resolution sequence stratigraphy: The Glossifungites ichnofacies in Triassic successions from the Betic Cordillera (southern Spain). Sedimentary Geology, 198: 293–307.
Seilacher, A., 1967. Bathymetry of trace fossils. Marine Geology, 5: 413–428.
Sharafi, M., Ashuri, M., Mahboubi, A., & Moussavi-Harami, R., 2012. Stratigraphic application of Thalassinoides ichnofabric in delineating sequence stratigraphic surfaces (Mid-Cretaceous), Kopet-Dagh Basin, northeastern Iran. Palaeoworld, 21: 202-216.
Sharafi, M., Longhitano, S.G., Mosaddegh, H., Mahboubi, A., & Moussavi-Harami, R., 2016. Sedimentology of a transgressive mixed-energy (wave/tide-dominated) estuary, Upper Devonian, Geirud Formation (Alborz Basin, northern Iran). IAS Special publications, Wiley Blackwell, In press.
Sharafi, M., Mahboubi, A., Moussavi-Harami, R., Ashuri, M., & Rahimi, B., 2013. Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Aitamir Formation (Albian–Cenomanian), Kopet-Dagh Basin, northeastern Iran. Journal of Asian Earth Sciences, 67-68: 171-186.
Sharafi, M., Mahboubi, A., Moussavi-Harami, R., Mosaddegh, H., & Gharaie, M.H.M., 2014. Trace fossils analysis of fluvial to open marine transitional sediments: Example from the Upper Devonian (Geirud Formation), Central Alborz, Iran. Palaeoworld, 23: 50–68.
Stöcklin, J., 1968. Structural history and tectonics of Iran: A review. The American Association of Petroleum Geologists Bulletin, 52: 1229-1258.
Taylor, A.M., & Goldring, R., 1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150: 141–148.
Taylor, A.M., Goldring, R., & Gowland, S., 2003. Analysis and application ofichnofabric. Earth-Science Reviews, 60: 227–259.
Uchman, A., & Krenmayr, H.G., 2004. Trace fossils, ichnofabrics and sedimentary facies in the shallow marine Lower Miocene Molasse of Upper Austria. Jahrbuch der Geologischen Bundesanstalt, 144: 233–251.
Uroza, C.A., & Steel, R.J., 2008. A highstand shelf-margin delta system from the Eocene of West Spitsbergen, Norway. Sedimentary Geology, 203: 229–245.
Wehrmann, A., Yılmaz, I., Yalcın, M.N., Wilde, V., Schindler, E., Weddige, K., Saydam Demirtas, G., Özkan, R., Nazik, A., Nalcioğlu, G., Kozlu, H., Karslıoğlu, Ö., Jansen, U., Ertuğ, K., Brocke, R., & Bozdoğan, N., 2010. Devonian shallow-water sequences from the North Gondwana coastal margin (Central and Eastern Taurides, Turkey): Sedimentology, facies and global events. Gondwana Research, 17: 546–560.
Walker, R.G., & Plint, A.G., 1992. Wave- and storm-dominated shallow marine systems. In: Walker, R.G., James, N.P. (eds.), Facies Models: Response to Sea Level Changes. Geological Association of Canada, Newfoundland, 219-238.
Zonneveld, J.P., Gingras, M.K., & Pemberton, S.G., 2001. Trace fossil assemblages in a Middle Triassic mixed siliciclastic-carbonate marginal marine depositional system, British Columbia. Palaeogeography, Palaeoclimatology, Palaeoecology, 166: 249-276.
CAPTCHA Image