Biostratigraphy of the Gurpi Formation with emphasis on Calcareous Nannofossils in the Evaz section, southeast of Shiraz

Document Type : مقالات پژوهشی

Author

Imam Khomeini International University

Abstract

Introduction
One of the most extensive Cretaceous deposits in Zagros is the marine sediments of Gurpi Formation in southeast Shiraz, which was studied based on stratigraphic and paleontology. Type section of the Gurpi Formation is located in Tang-e Pabdeh (Jams & Wynd, 1965). One of the most important achievement obtained from the Gurpi Formation can be related to study of calcareous nannofossils which is used for determination of precise age and biostratigraphy. In the southeast of Shiraz, Gurpi Formation consists of 95 m thickness which consists mainly of marl, marly limestone and shale, which is gradually overlain by Tarbur Formation.
Materials & Methods
In this study, 42 samples from Gurpi Formation have been studied. Samples were prepared following standard smear slide method (Bown & Young 1998). The nomenclature of calcareous nannofossil follows the taxonomic schemes of Perch-Nielsen (1985), Bown (1998) and Burnett (1998).
Discussion
In order to study the biostratigraphy of Gurpi Formation in southeast of Shiraz, the Evaz section was selected. In this section, the Gurpi Formation is mainly composed of marl, shale, and argillaceous limestone. Calcareous nannofossils recorded in the Mesozoic strata are an appropriate tool for biostratigraphic studies. The nannofossil zonation used in the present study is based on the Nannofossils Cretaceous zonation of Sissingh (1977), Roth (1978) and Burnett (1998). According to the first and last occurrence of index species the following bio zones are identified:
Aspidolithus parcus parcus zone (CC18/ UC14/NC18)
This bio zone is recorded from the FO Aspidolithus parcus to the LO of Marthasterites furcatus. The age of this zone is Early Campanian.
Calculites ovalis Zone (CC19/ UC15/NC18)
This bio zone is recorded from the LO Marthasterites furcatus to the FO of Ceratolithoides aculeus. The age of this zone is late Early Campanian.
Ceratolithoides aculeus Zone (CC20/UC15/ NC19)
This zone spans the interval from the FO of Ceratolithoides aculeus to the FO of Uniplanarius sissinghii. The age of this zone is late Early Campanian.
Quadrum sissinghii Zone (CC21/ UC15/NC19)
The next nannofossil unit recorded in this study is the CC21. This zone spans the interval from the FO of Uniplanarius sissinghii to the FO of Quadrum trifidum. The age of this zone is late Early Campanian-early Late Campanian.
Quadrum trifidum Zone (CC22/UC15/ NC20)
This zone spans the interval from the FO of Quadrum trifidum to the LO of Reinhardtites anthophorus. The age of this zone is late Late Campanian.
Tranolithus phacelosus Zone (CC23/UC15-UC18/ NC20-NC21)
This zone spans the interval from the LO of Reinhardtites anthophorus to the LO of Tranolithus orionatus. The age of this zone is late Late Campanian-Early Maastrichtian.
Reinhardtites levis Zone (CC24/ UC18/NC21)
This zone spans the interval from the LO of Tranolithus phacelosus to the LO of Reinhardtites levis. The age of this zone is late Early Maastrichtian.
Conclusion
As a result of this study, 22 genera and 33 species of calcareous nannofossils have been recognized. Based on distribution of index species of calcareous nannofossils, biozones of the zonation of Sissingh (1977) have been recognized, including Aspidolithu sparcus zone, Calculites ovalis zone, Ceratolithoides aculeus zone, Quadrum sissinghii zone, Quadrum trifidum zone, Tranolithus phacelosus zone and Reinhardtites levis zone, that corresponding to lower part of NC18 to lower part of NC21of the zonation of Roth (1978) and UC14-UC18 Nannofossil Zone of the zonation of Burnett (1998). According to the identified biozones, the age of the Gurpi Formation is Early Campanian to late Early Maastrichtian. The study of the Evaz section shows that sediments of Gurpi Formation deposited in the shalloer depth of sedimentary basin during the late Early Maastrichtian, as conformable and suddenly led to the limestone formation of Tarbur Formation.
Keywords: Biozones; Gurpi; Biostratigraphy; Fars; Calcareous nannofossils.
References
Bown, P.R., (ed.), 1998. Calcareous Nannofossil Biostratigraphy. Chapman and Hall, London, 315 p.
Bown, P.R., & Young, J.R., 1998. Techniques. In: Bown, P.R., (ed.), Calcareous Nannofossil Biostratigraphy. Chapman and Hall, London, 16-28.
Burnett, J.A., 1998. Upper Cretaceous. In: Bown, P.R., (ed.), Calcareous Nannofossil Biostratigraphy, British Micropalaeontological Society Publication Series. Chapman and Hall Ltd. Kluwer Academic Publisher, London, 132-165.
James, G.A., & Wynd, J.G., 1965. Stratigraphic Nomenclature of Iranian Oil Consortium Agreement Area. American Association of Petroleum Geologists Bulletin, 49: 2182-2245.
Perch-Nielsen, K., 1985. Mesozoic calcareous nannofossils. In: Bolli, H.M., et al., (eds.), Plankton Stratigraphy. Cambridge University Press, 329-426.
Sissingh, W., 1977. Biostratigraphy of cretaceous calcareous nannoplankton. Geologie En Minjbouw, 56: 37-65.

Keywords


آقانباتی، ع.، 1385. زمین شناسی ایران. انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور، 586 ص.
حسینی فالحی، ب.، 1385. لیتواسترتیگرافی و نانواستراتیگرافی سازندگورپی درتاقدیس کوه منگشت و برش تاقدیس کمستان (منطقه ایذه). پایان نامه کارشناسی ارشد دانشگاه شهید بهشتی، 194 ص.
رضائیان، ه.، 1390. زیست چینه نگاری سازندهای ایلام وگورپی در شرق شهرستان رامهرمز، برش تنگ بوالفارس. پایان نامه کارشناسی ارشد، دانشگاه اصفهان، 110 ص.
سنماری، س.، فضلی، ل.، عمرانی، م.، 1389. بررسی تطابق نانوپلانکتون‌های آهکی و روزن‌داران پلانکتون سازندگورپی در خاور بهبهان، علوم زمین، 75: 119ـ 126.
صالحی، ف.، 1380. بایواستراتیگرافی سازندگورپی در برش الگو با استفاده از نانوفسیل‌های آهکی. پایان نامه کارشناسی ارشد، دانشگاه شهید بهشتی، 188ص.
فریدونپور، م.، وزیری مقدم، ح.، غبیشاوی، ع.، طاهری، ع.، 1393. چینه نگاری سازندگورپی در برش تاقدیس کوه سیاه و مقایسه آن با برش‌های تنگ بوالفارس و تاقدیس آغار. رخساره‌های رسوبی، 7 (1): 83 ـ106.
هادوی، ف.، رساایزدی، م.، 1387. نانواستراتیگرافی سازندگورپی در برش دره شهر(جنوب شرق ایلام). فصلنامه زمین شناسی کاربردی، 4: 299ـ 308.
هادوی، ف.، شکری، ن.، 1388. نانواستراتیگرافی سازندگورپی در جنوب ایلام (برش کاور). رخساره های رسوبی، 2 (2): 217ـ 225.
همتی نسب، م.، قاسمی نژاد، ا.، درویش زاده، ب.، 1387. تعیین عمق دیرینه سازند گورپی بر مبنای روزن‌داران پلانکتون و بنتیک. مجله علوم دانشگاه تهران، 34 (1): 157ـ 173.
Alavi, M., 2007. Structures of the Zagros Fold-Thrust belt in Iran. American Journal of Sciences,
307: 1064-1095.
Bahrami, M., & Parvanehnezhad Shirazi, M., 2010. Microfacies and sedimentary environments of Gurpi and Pabdeh Formations and the type of Mesozoic-Cenozoic boundary in Fars province, Iran. Journal of Applied Geology, 5 (4): 330-335.
Beiranvand, B., Ghasemi-Nejad, E., & Kamali, M.R., 2013. Palynomorphs response to sea-level fluctuations:
a case studyfrom Late Cretaceous-Paleocene, Gurpi Formation, SW Iran. Journal of Geopersia,
3 (1): 11-24.
Beiranvand, B., & Ghasemi-Nejad, E., 2013. High resolution planktonic foraminiferal biostratigraphy of the Gurpi Formation, K/Pg boundary of the Izeh Zone, SW Iran. Revista Brasileira de Paleontologia,
16 (1): 5-26.
Bornemann, A., Aschwer, U., & Mutterlose, J., 2003. The impact of calcareous nannofossils on the pelagic carbonate accumulation across the Jurassic-Cretaceous boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 199: 187-228.
Bown, P. R., (ed.), 1998. Calcareous Nannofossil Biostratigraphy. Chapman and Hall, London, 315 p.
Bown, P.R., & Young, J.R., 1998. Techniques. In: Bown, P.R., (ed.), Calcareous Nannofossil Biostratigraphy. Chapman and Hall, London, 16- 28.
Burnett, J.A., 1998. Upper Cretaceous. In: Bown, P.R., (ed.), Calcareous Nannofossil Biostratigraphy. British Micropalaeontological Society Publication Series, Chapman and Hall, London, 132-165.
Bralower, T.J., 1988. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian-Turonian boundary interval: implications for the origin and timing of oceanic anoxia. Paleoceanography,
3: 275-316.
Bralower, T.J., Leckie, R.M., Sliter, W.V., & Thierstein, H.R., 1995. An integrated Cretaceous microfossil biostratigraphy. In: Berggren, W.A., Kent, D.V., Aubry, M.P., & Hardenbol, J., (eds.), Geochronology, time scales and global stratigraphic correlation. SEPM special publication, 54: 65-79.
Bralower, T.J., 2002. Evidence of surface water oligotrophy during the Paleocene-Eocene thermal maximum: Nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea. Paleoceanography, 17 (2):1-13.
Bralower, T.J., 2005. Data report: Paleocene-Early Oligocene calcareous nannofossil biostratigraphy, ODP Leg 198 Sites 1209, 1210, and 1211 (Shatsky Rise, Pasific Ocean). In: Bralower, T.J., Premoli Silva, I., & Malone, M.J., (eds.), Proceedings of the Ocean Drilling Program. Scientific Results, 198: 1-15.
Campbell, R.J., Howe, R.W., & Rexilius, J.P., 2004. Middle Campanian-lowermost Maastrichtian nannofossil and foraminiferal biostratigraphy of the northwestern Australian margin. Cretaceous Research, 25: 827-864.
Erba, E., 2004. Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology, 52: 85-106.
Friedrich, O., & Meier, S., 2006. Suitability of stable oxygen and carbon isotopes of calcareous dinoflagellate cysts for paleoclimatic studies: Evidence from the Campanian-Maastrichtian cooling phase. Palaeogeography, Palaeoclimatology, Palaeoecology, 239: 456-469.
Gradstein, F.M., Ogg, J.G., Schmitz, M.D., & Ogg, G.M., (eds.), 2012. The Geological Time Scale 2012, Amsterdam, Elsevier, 2: 1144 p.
Hardas, P., Mutterlose, J., Friedrich, O., & Erbacher, J., 2008. A major biotic event in the middle Cenomanian equatorial Atlantic. In: Hardas, P., (ed.), The response of calcareous nannofossils to Oceanic Anoxic Event 2 and the Middle Cenomanian Event in the tropicalAtlantic. Biostratigraphy and palaeoceanographic implications, 84-129.
Herrle, J.O., 2003. Reconstructing nutricline dynamics of mid-Cretaceous oceans evidence from calcareous nannofossils from the Niveau Paquier black shale (SE France). Marine Micropaleontology, 47: 307-321.
Huber, B.T., Norris, R.D., & MacLeod, K.G., 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, 30: 123-126.
James, G.A., & Wynd, J.G., 1965. Stratigraphic Nomenclature of Iranian Oil Consortium Agreement Area. American Association of Petroleum Geologists Bulletin, 49: 2182-2245.
Kessels, K., Mutterlose, J., & Ruffel, A., 2003. Calcareous nannofossils from late Jurassic sediments of the Volga Basin (Russian Platform): evidence for productivity-controlled black shale deposition. International Journal of Earth Sciences, 92: 743-757.
Linnert, C., & Mutterlose, J., 2008. Kalkige Nannofossilien des Untercampans (Oberkreide) von Buldern (Stadt Dümen; NRW). Geologie Paläontologie Westfalen, 71: 77-101.
Linnert, C., & Mutterlose, J., 2009. Evidence of increasing surface water oligotrophy during the Campanian- Maastrichtianboundary interval: Calcareous nannofossils from DSDP Hole 390A (Black Nose). Marine Micropaleontology, 73: 26-36.
Linnert, C., Mutterlose, J., & Erbacher, J., 2010. Calcareous nannofossils of the Cenomanian-Turonian boundary interval from the BorealRealm (Wunstorf, northwest Germany). Marine Micropaleontology, 74: 38-58.
Linnert, C., Mutterlose, J., & Herrle, J.O., 2011. Late Cretaceous (Cenomanian-Maastrichtian) calcareous nannofossils from Goban Spur (DSDP Sites 549, 551): Implications for the palaeoceanography of the proto North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 299: 507-528.
Lees, J.A., 2002. Calcareous nannofossil biogeography illustrates palaeoclimate change in the Late Cretaceous Indian Ocean. Cretaceous Research, 23: 537-634.
Mahanipour, A., & Najafpour, A., 2016. Calcareous nannofossil assemblages of the Late Campanian-Early Maastrichtian form Gurpi Formation (Dezful embayment, SW Iran): Evidence of a climate cooling event. Journal Geo persia, 6 (1): 129-148.
Manivit, H., 1971. Les nannofossiles calcaires du Cretace français (Aptien-Maestrichtien): essai de biozonation appuyee sur les stratotypes. PhD thesis, Universite de Paris, 187 p.
Motiei, H., 2003. Stratigraphy of Zagros, Treatise on the geology of Iran. Tehran, Iran. Geology Survey Press, 583 p.
Mutterlose, J., 1989.Temperature-controlled migration of calcareous nannofloras in the north-west European Aptian. In: Crux, J.A., van & Heck, S.E., (eds.), Nannofossils and their Applications. Proceedings of the International Nannofossil Association Conference, London, Ellis Horwood, Chichester, 122-142.
Mutterlose, J., Bornemann, A., & Herrle, J.O., 2005. Mesozoic calcareous nannofossils-state of the art. Paläontologische Zeitschrift, 79 (1): 113-133.
Perch-Nielsen, K., 1985. Mesozoic calcareous nannofossils. In: Bolli, H.M., Saunders, J.B., & Perch-Nielsen, K., (eds.), Plankton Stratigraphy. Cambridge University Press, 329-426.
Roth, P.H., 1978. Cretaceous nannoplankton biostratigraphy and oceanography of the northwestern Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project, 44: 731-760.
Roth, P.H., & Krumbach, K.R., 1986. Middle Cretaceous calcareous nannofossil biogeography and preservation in the Atlantic and Indian oceans: implications for paleoceanography. Marine Micropaleontology, 10: 235-266.
Sissingh, W., 1977. Biostratigraphy of cretaceous calcareous nannoplankton. Geologie En Minjbouw,
56: 37-65.
Shamrock, J.L., & Watkins, D.K., 2009. Evolution of the Cretaceous calcareous nannofossil genus Eiffellithus and its biostratigraphic significance. Cretaceous Research Journal, 30: 1083-1102.
Tantawy, A.A.A.M., 2002. Calcareous nannofossil biostratigraphy and palaeoecology of the Cretaceous-Tertiary transition in the central eastern desert of Egypt. Marine Micropaleontology, 47: 323-356.
Thibault, N., & Gardin, S., 2007. The late Maastrichtian nannofossil record of climate change in the South Atlantic DSDP Hole 525A. Marine Micropaleontology, 65: 163-184.
Thibault, N., & Gardin, S., 2010. The calcareous nannofossil response to the end-Cretaceous warm event in the Tropical Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 291: 239-252.
Thierstein, H.R., 1976. Mesozoic calcareous nannoplankton Biostratigraphy of Marine Sediments. Marine Micropaleontology, 1: 325-362.
Thierstein, H.R., 1981. Late Cretaceous nannoplankton and the change at the Cretaceous-Tertiary boundary. In: Warme, J.E., Douglas, R.G., & Winterer, E.L., (eds.), The Deep Sea Drilling Project: a decade of progress. SEPM Special Publication, 32: 355-394.
Tremolada, F., Erba, E., & Bralower, T.J., 2006. Late Barremian to early Aptian calcareous nannofossil paleoceanography and paleoecologyfrom the Ocean Drilling Program Hole 641C (Galicia Margin). Cretaceous Research, 27: 887-897.
Vaziri-Moghaddam, H., 2002. Biostratigraphic study of the Ilam and Gurpi Formations based on planktonicforaminifera in SE of Shiraz (Iran). Journal of Sciences, Islamic Republic of Iran,
13: 339-356.
Villa, G., Fioroni, C., Pea, L., Bohaty, S., & Persico, D., 2008. Middle Eocene-late Oligocene climate variability: Calcareous nannofossil response at Kerguelen Plateau, Site 748. Marine Micropaleontology, 69: 173-192.
Watkins, D.K., 1992. Upper Cretaceous nannofossils from Leg 120, Kerguelen plateau, southern ocean. Proceedings of the Ocean Drilling program, scientific results, 120: 343-370.
Watkins, D.K., Wise Jr, S.W., Pospichal, J.J., & Crux, J., 1996. Upper Cretaceous calcareous nannofossil biostratigraphy and paleoceanography of the Southern Ocean. In: Moguilevsky, A., & Whatley, R., (eds.), Microfossils and oceanic environments. University of Wales, Aberystwyth Press, 55-381.
Watkins, D.K., & Self-Trail, J.M., 2005. Calcareous nannofossil evidence for the existence of the Gulf Stream during the late Maastrichtian. Paleoceanography and Paleoclimatology, 20 (3): 1-9.
Williams, J. R., & Bralower, T.J., 1995. Nannofossil assemblages, fine fraction stable isotopes, and the paleoceanography of the Valanginiane-Barremian (Early Cretaceous) North Sea Basin. Paleoceanography, 10: 815-864.
CAPTCHA Image