Geochemical comparison of Padeha Formation sandstones in the north of Tabas and Yazd blocks: Implication for paleogeography

Document Type : مقالات پژوهشی

Authors

1 Shahrood University of Technology

2 Shahid Bahonar University of Kerman

Abstract

Introduction     
This research is a part of the studies of sedimentology and stratigraphy of deposits associated with the Devonian located in Central Iran, which is known as the Padeha Formation (Lower-Middle Devonian age). In this research, the Padeha Formation in north of Tabas (Ozbak-Kuh) and Yazd (Doruneh) blocks were selected and studied. These succession is measured in Ozbak-Kuh, 492 meters, which is often composed of siliciclastic, dolomitic and evaporite rocks, while in the Doruneh section, this formation consists of 310 meters of siliciclastic, calcareous and dolomitic rocks. The aim of this study is to focus on the petrography and geochemistry aspects for provenance studies.
Materials & Methods    
Twenty one sandstone samples from Ozbak-Kuh and fifteen sandstone samples from Doruneh section  were selectedand studied with Polarized microscope. In each thin section, about 300 points were counted using the Gazzi-Dickinson method. According to the point counting, the major and accessory components of this sandstones are identified and quartz, feldspar and rock fragments modes are utilized for naming the sandstones according to the Folk classification (Folk, 1980). 16 samples of medium grain sandstones with the lowest amount of carbonate cement were selected for geochemical analysis (ICP-MS method).
Petrography & Geochemistry 
Petrographic studies of sandstone in Ozbak-Kuh section are mainly indicative of quartzarenite and sublitharenite (subchertarenite) petrofacies, however, quartzarenite and subarkose petrofacies have been identified in the Doruneh section. Compared to the Upper Continental Crust (UCC) (Taylor & McLennan, 1985), sandstones of the Padeha Formation in the Ozbak-Kuh section are somewhat enriched in some elements, such as zirconium and hafnium, but in the Doruneh section, zirconium and hafnium are slightly depleted compared to the Upper Continental Crust. All sandstone samples in both sections are strongly depleted compared to UCC. In both the Ozbak-Kuh and Doruneh sections, vanadium, cobalt, nickel and scandium exhibit much depletion compared to the UCC.
Discussion of Results & Conclusions    
Geochemical diagram of Zr/Sc against Th/Sc (McLennan et al., 1993), along with plotting the data of Padeha Formation on this diagram shows that the samples of Doruneh section are plotted near the UCC. This shows that Padeha Formation sandstones in the Doruneh section are derived from intermediate to acidic igneous rocks, and recycling have not been affected. But the Ozbak-Kuh samples often reflect the granitic parent rock, which is located in the range of recycling. Additionally, the La/Sc versus Co/Th (Gu et al., 2002) is also a confirmation of the felsic to granitic parent rocks for Padeha Formation in both sections. For determination of tectonic setting, in this reseach, triangular diagrams based on trace elements (Bhatia, 1985) have been used. According to these diagrams, Ozbak-Kuh samples, mostly plotted in the passive continental margin field and Doruneh section sandstones are plotted in passive and active continental margin fields. The present study, using the results of petrography and geochemistry and the paleogeographic investigations, shows that the deposits of the Lower-Middle Devonian Padeha Formation can be formed in the transition between the transformations of rifted margin to passive continental margin of Paleo-tethys.
Keywords: Sandstone; Geochemistry; Provenance; Padeha Formation; Ozbak-Kuh; Daroneh.
References
Bhatia, M.R., 1985. Plate tectonics and geochemical composition of sandstones: a reply. Journal of Geology, 93: 85-87.
Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, Texas, 182 p.
Gu, X.X., Liu, J.M., Zheng, M.H., Tang, J.X., & Qi, L., 2002. Provenance and tectonic setting of the proterozoic turbidites in Hunan, South China: geochemical evidence. Journal of Sediment Research, 72: 393-407.
McLennan, S.M., Hemming, S., McDaniel, D.K., & Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson, M.J., & Basu, A., (eds.), Processes Controlling the Composition of Clastic Sediments. Geological Society of American Special, 21-40.
Taylor, S.R., & McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Oxford, Blackwell, 312 p.

Keywords


آقانباتی، ع.، 1385. زمین شناسی ایران. انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور، 586 ص.
زندمقدم، ح.، 1392. آنالیز رخساره‌ها، برخاستگاه تکتونیکی، ژئوشیمی، دیاژنز و چینه نگاری سکانسی سازند پادها در ایران مرکزی. رساله دکتری، دانشگاه فردوسی مشهد، 380 ص.
علوی نائینی، م.، 1372. چینه شناسی پالئوزوئیک ایران. سازمان زمین شناسی و اکتشافات معدنی کشور، 5: 492 ص.
لاسمی، ی.، 1379. رخساره‎ها، محیط‌های رسوبی و چینه نگاری سکانسی نهشته سنگ‌های پرکامبرین بالایی و پالئوزوئیک ایران. انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور، 78: 180 ص.
Aharipour, R., Moussavi, M.R., Mosaddegh, H., & Mistiaen, B., 2010. Facies features and paleoenvironmental reconstruction of the Early to Middle Devonian syn-rift volcano-sedimentary succession (Padeha Formation) in the Eastern-Alborz Mountains, NE Iran. Facies, 56: 279-294.
Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geological Society American Bulletin, 103: 983-992.
Bauluz, B., Mayayo, M.J., Fernandez-Nieto, C., & Gonzalez-Lopez, J.M., 2000. Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology, 168: 135-150.
Berberian, M., & King, G.C.P., 1981. Toward a paleogeography and tectonic evolution of Iran. Canadian Journal Earth Sciences, 18: 210-265.
Bhatia, M.R., 1985. Plate tectonics and geochemical composition of sandstones: a reply. Journal of Geology, 93: 85-87.
Bhatia, M.R., & Crook, K.A.W., 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92: 181-193.
Boulin, J., 1988. Hercynian and Eocimmerian event in Afghanistan and adjoining regions. Tectonophysics, 148: 253-278.
Boulin, J., 1991. Structures in southwest Asia and evolution of the eastern Tethys. Tectonophysics, 196: 211-268.
Caracciolo, L., Le Pera, E., Muto, F., & Perri, F., 2011. Sandstone petrology and mudstone geochemistry of the Peruc-Koryacany Formation (Bohemian Cretaceous Basin, Czech Republic). International Geology Review, 53: 1003-1031.
Cullers, R.L., 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51 (3): 181-203.
Cullers, R.L., Barret, T., Carlson, R., & Robinson, B., 1987. Rare earth element and mineralogical changes in Holocene soil and stream sediment: a case study in the Wet Mountains, Colorado, USA. Chemical Geology, 63: 275-295.
Cullers, R.L., Basu, A., & Suttner, L.J., 1988. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chemical Geology, 70 (4): 335-348.
Cullers, R.L., & Podkovyrov, V.N., 2000. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Research, 104 (1-2): 77-93.
Davoudzadeh, M., Soffel, H., & Schmidt, K., 1981. On the rotation of the Central-East-Iran microplate. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, Monatshefte für Chemie - Chemical Monthly. International Journal of Chemistry, 3: 180-192
Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, Texas, 182 p.
Gu, X.X., Liu, J.M., Zheng, M.H., Tang, J.X., & Qi, L., 2002. Provenance and tectonic setting of the proterozoic turbidites in Hunan, South China: geochemical evidence. Journal of Sedimentary Research, 72: 393-407.
Husseini, M.I., 1989. Tectonic and depositional model for the Late Precambrian-Cambrian Arabian plate. American Association of Petroleum Geologists Bulletin, 73: 1117-1131.
Husseini, M.I., 1991. Tectonic and depositional model of the Arabian and adjoining plates during the Silurian-Devonian. American Association of Petroleum Geologists Bulletin, 75: 108-120.
Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D., & Sares, S.W., 1984. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology, 54: 103-116.
Jafarzadeh, M., Harami, R.M., Amini, A., Mahboubi, A., & Farzaneh, F., 2013. Geochemical constraints on the provenance of Oligocene-Miocene siliciclastic deposits (Zivah Formation) of NW Iran: implications for the tectonic evolution of the Caucasus. Arabian Journal of Geosciences, 7: 4245-4263.
Nadimi, A., 2007. Evolution of the Central Iranian basement. Gondwana Research 12: 324-333.
McLennan, S.M., Hemming, S., McDaniel, D.K., & Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson, M.J., & Basu, A., (eds.), Processes Controlling the Composition of Clastic Sediments. Geological Society of American Special Paper, 285: 21-40.
Najafzadeh, A., Jafarzadeh, M., & Moussavi-Harami, R., 2010. Provenance and tectonic setting of Upper Devonian sandstones from Ilanqareh Formation (NW Iran). Revista Mexicana de Ciencias Geologicas, 27: 545-561.
Odigi, M.I., & Amajor, L.C., 2009. Geochemical characterization of Cretaceous sandstones from the Southern Benue Trough, Nigeria. Chinese Journal of Geochemistry, 28: 44-54.
Ruban, D.A., Al-Husseini, M., & Iwasaki, Y., 2007. Review of Middle East Paleo-zoic plate tectonics. GeoArabia, 12: 35-56.
Ruttner, A., Nabavi, M.H., & Hajian, J., 1968. Geology of Shirgesht area (Tabas area, East Iran). Geological Survey of Iran, 4: 1-133.
Ruttner, A.W., Nabavi, M.H., & Alavi, M., 1970. Geological Map of Ozbak-Kuh, 1:100,000 Series, Geology Survey of Iran, Tehran.
Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H., Hevard, A.P., Horbury, A.D., & Simmons, M.D., 2001. Arabian Plate Sequence Stratigraphy. GeoArabian, Special Publication, 2: 1-270.
Soffel, H.C., Davoudzadeh, M., Rolf, C., & Schmidt, S., 1996. New palaeomag-netic data from Central Iran and a Triassic palaeoreconstruction. Geologische Rundschau, 85: 293-302.
Stampfli, G., Marcoux, J., & Baud, A., 1991. Tethyan margins in space and time. Palaeogeography, Palaeoclimatology, Palaeocology. International Journal for the Geo-Science, 87: 373-409.
Stampfli, G.M., 1978. Etude geologic general de L Elburz oriental au sud de Gonbad-e Quabus, Iran N-E. These, University of Geneva, 328 p.
Stampfli, G.M., 2000. Tethyan oceans. In: Bozkurt, E., Winchester, J.A., & Piper, J.D.A., (eds.), Tectonics and magmatism in Turkey and the surrounding area. Geological Society of London, Special Publications, 173: 1-23.
Stocklin, J., & Setudehnia, A. 1991. Stratigraphic Lexicon of Iran. Geological Survey of Iran Report 18, third edition, 1-376.
Sun, L., Gui, H., & Chen, S., 2012. Geochemistry of sandstones from the Neoproterozoic Shijia Formation, northern Anhui Province, China: implications for provenance, weathering and tectonic setting. Chemie Erde, 72 (3): 253-260.
Takin, M., 1972. Iranian geology and continental drift in the Middle East. Nature, 235: 147-150.
Taylor, S.R., & McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, 1-312.
Vail, P.R., Mitchum Jr, R.M., & Thompson, S., 1977. Seismic stratigraphy andglobal changes of sea level, part four: global cycles of relative changesof sea level. American Association of Petroleum Geologists Memoir, 26: 83-98.
Weltje, G.J., & von Eynatten, H., 2004. Quantitative provenance analysis of sediment: review and outlook. Sedimentary Geology, 171: 1-11.
Wendt, J., Kaufmann, B., Belka, Z., Farsan, N., & Karimu Bavandpur, A., 2002. Devonian/Lower Carboniferous stratigraphy, facies patterns and palaeogeography of Iran. Part I. Southeastern Iran. Acta Geologica Polonica, 52 (2): 129-168.
Wendt, J., Kaufmann, B., Belka, Z., Farsan, N., & Karimu Bavandpur, A., 2005. Devonian/Lower Carboniferous stratigraphy, facies patterns and palaeogeography of Iran Part II. Northern and central Iran. Acta Geologica Polonica, 55 (1): 31-97.
Zand-Moghadam, H., Moussavi-Harami, R., Mahboubi, A., & Bavi, H., 2013. Comparison of tidalites in siliciclastic, carbonate, and mixed siliciclastic-carbonate Systems: examples from Cambrian and Devonian deposits of East-Central Iran. International Scholarly Research Notices Geology, 1-21.
Zand-Moghadam, H., Moussavi-Harami, R., & Mahboubi, A., 2014. Sequence stratigraphy of the Early-Middle Devonian succession (Padeha Formation) in Tabas Block, East-Central Iran: Implication for mixed tidal flat deposits. Palaeoworld, 23: 31-49.
CAPTCHA Image