Provenance of Zaygun Formation, based on petrography, modal analysis and geochemistry in Sarbandan section, central Alborz

Document Type : مقالات پژوهشی

Authors

Shahid Beheshti University

Abstract

Petrography, modal analysis of sandstones and major elements geochemistry of shales of Early Cambrian Zagun Formation in Sarbandan section, Central Alborz, are used to identify their provenance (including parent rocks, tectonic setting and paleo-weathering). Petrography of the sandstones and plotting their point counting data on Qt44, F47, L9 and Qm44, F45 ,Lt11 diagrams imply that they are arkose, with mainly a plutonic and high- to medium-grade metamorphic source rock in a basement uplift under a dry to sub-humid climate which were deposited in a transition from rift to passive margin tectonic setting. However, the major elements geochemical data show that these sandstones are dominantly arkose and the shales are dominantly iron-free. These results refer to erosion from a quartzose-sedimentary provenance (old quartz grains from rocks such as granite and acidic gneiss) and deposition in a passive continental margin tectonic setting with moderate chemical weathering under dry to sub-humid climatic condition. However, there is a discernible consistency among all different approaches (petrography, modal analysis and geochemistry) in Sarbandan section as well as the similar studied in Zagun Type section. Consequently, the results imply a uniform condition of the hinterland and the basin for deposition of the Zagun Formation in central Alborz during Early Cambrian.

Keywords


آقانباتی، ع.، 1383. زمین شناسی ایران. سازمان زمین شناسی و اکتشافات معدنی کشور، 586ص.
جافری، م.، حسینی برزی، م.، صادقی، ع.، 1390. پتروگرافی، دیاژنز و خاستگاه سازند زاگون، برش سربندان، البرز مرکزی. سی امین گردهمایی علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور.
جافری، م.، 1391. محیط رسوبی و دیاژنز سازند زاگون در برش سربندان، البرز مرکزی. پایان نامه کارشناسی ارشد، دانشگاه شهید بهشتی، 200ص.
جوادی نیا، ص.، 1390. محیط رسوبی و دیاژنز نهشته های سازند زاگون در برش تیپ ـ روستای زاگون ـ البرز مرکزی. پایان نامه کارشناسی ارشد، دانشگاه شهید بهشتی، 149ص.
جوادی نیا، ص.، حسینی برزی، م.، 1389. ژئوشیمی عناصر اصلی سازند زاگون در برش تیپ ـ روستای زاگون ـ البرز مرکزی. بیست و نهمین گردهمایی علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور.
حمدی، ب، 1374. زمین شناسی ایران: سنگهای رسوبی پرکامبرین ـ کامبرین در ایران. سازمان زمین شناسی و اکتشافات معدنی کشور، 353 ص.
درویش زاده، ع.، 1370. زمین شناسی ایران. انتشارات امیرکبیر، 908ص.
Allenbach, P., & Steiger, R., 1997. Quadrangle geological map of Damavand, Scale: 1/100000. Geological Survey of Iran.
Alsharhan, A.S., & Nairn, A.E.M., 1977. Sedimentary basins and petroleum geology of the Middle East. Elsevier, Amsterdam,843 p.
Assereto, R., 1963. The Paleozoic formations in Central Alborz Iran. Rivista Italiana di Paleontologia e Stratigrafia, 69: 503-543.
Basu, A., Young, S.W., Suttner, L.J., James, W.C., & Mack, G.H., 1975. Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Petrology. 45: 873– 882.
Bauluz, B., Mayayo, M.J., Fernandez-Nieto, C., & Lopez, J.M.G., 2000. Geochemistry of Precambrian Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance and tectonic setting. Chemical Geology, 168: 135-150.
Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91: 611–627.
Bhatia, M.R., & Crook, K.A.W., 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92: 181–193.
Bhatia, M.R., Taylor, S.R., 1981. Trace-element geochemistry and sedimentary provinces: a study from the Tasman geosyncline, Australia. Chemical Geology, 33: 115–125.
Condie K.C., & Wronkiewicz D.S., 1990. The Ce/Th ratio in Precambrian pelites from the Kaapvaal Craton as an indx of cratanic evolution. Earth Planet. Sci. Lett., 97: 256-267.
Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104: 1-37.
Cox, R., Low, D.R., & Cullers, R.L., 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59: 2919–2940.
Cullers, R.L., 1994. The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the Wet Mountains region, USA. Chemical Geology, 113: 327-343.
Cullers, R.L., 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51: 181–203.
Cullers, R.L., 2002. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical geology, 191 (4): 305-327.
Dabard, M. P., 1990. Lower Brioverian Formations (Upper Proterozoic) of the Armorican Massif (France): Geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sediment.Geology, 69: 45–58.
Das, B.K., AL-Mikhlafi, A.S., & Kaur, P., 2006. Geochemistry of Mansar Lake sediments, Jammu, India: Implication for source-area weathering, provenance, and tectonic setting. Asian Earth Science, 26: 649-668.
Dickinson, W.R., 1988. Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In: Kleinspehn, K.L., & Poala, C., (Eds.), New Perspective in Basin Analysis. Springer, New York, 3–25.
Etemad-Saeed, N., & Hosseini-Barzi, M., 2011, Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht-e-badam block, Central Iran. African Earth Sciences, 61: 142-159.
Fedo, C.M., Eriksson, K.A., & Krogstad, E.J., 1996. Geochemistry of shales from the Archean (3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications of provenance and source-area weathering. Geochimica et Cosmochimica Acta, 60: 1751–1763.
Floyd, P.A., Winchester, J.A., & Park, R.G., 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Loch Maree group of Gairloch, NW Scotland. Percambrian Research, 45: 203-214.
Folk, R.L., 1974. Petrology of Sedimentary Rocks. Hemphill, Austin, Texas, 159.
Garcia, D., Ravenne, C., Marechal, B., & Moutte, J., 2004. Geochemical variability induced by entrainment sorting: quantified signals for provenance analysis. Sedimentary Geology, 171: 113-128.
Gu, X.X., Liu, J.M., Zheng, M.H., Tang, J.X., & Qi, L., 2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, south China: Geochemical evidence. Journal of Sedimentary Research, 72: 393-407.
Hayashi, K., Fujisawa, H., Holland, H.D. & Ohmoto, H., 1997. Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61: 4115-4138.
Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology. 58: 820–829.
Horton, B.K., Hassanzadeh, J., Stockli, D.F., Axen, G.J., Gillis, R.J., Guest, B., Amini, A., Fakhari, M.D., Zamanzadeh, S.M., & Grove, M., 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics. Journal of Tectonophysics 451: 97–122.
Moujahed Al-Husseini, 1989. Tectonic & Deposition Model of Late Precambrian-Cambrian Arabian and Adjoining Plates. The American Assoclation of Petroleum Geologists Bulletin, 73 (9): 1117-1129.
Jafarzadeh, M., & Hosseini-Barzi, M., 2008. Petrography and geochemistry of Ahwaz Sandstone Member of Asmari Formation, Zagros, Iran: implications on provenance and tectonic setting. Revista Mexicana de Ciencias Geologicas, 25 (2): 247-260.
Jin, Z., Li, F., Cao, J., Wang, S., & Yu, J., 2006. Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting and catchment weathering. Geomorphology, 80: 147–163.
Krynine, P.D., 1950. Petrology, stratigraphy, and origin of the Triassic sedimentary rocks of Connecticut. Conn. Geol. Nat. History Survey Bull. 73: 239 p.
Lee, Y.I., & Sheen, D.H., 1998. Detrital modes of the Pyeongan Supergroup (Late Carboniferous –Early Triassic) sandstones in the Samcheog coalfield, Korea: implication for provenance and tectonic setting. Sediment. Geology, 119: 219–238.
Lee, Y.I., 2002. Provenance derived from the geochemistry of late Paleozoic–early Mesozoic mudrocks of the Pyeongan Supergroup, Korea. Sedimentary Geology, 149: 219– 235.
Lopez, J.M.G., Bauluz, B., Nieto, C.F., & Oliete, A.Y., 2005. Factors controlling the trace-element distribution in fine-grained rocks: the Albian Kaolinite-rich deposits of the Oliete Basin (NE Spain). Chemical Geology, 214: 1-19.
Maynard, J.B., Valloni, R., & Yu, H., 1982. Composition of modern deep sea sands from arc-related basins. Geological Society of London, Special Publication, 10: 551-561.
McLennan, S.M., Taylor, S.R., & Eriksson, K.A., 1983. Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. Geochim. Cosmochim. Acta, 47: 1211–1222.
McLennan, S.M., & Taylor, S.R., 1991. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. Journal of Geology, 799: 1-21.
McLennan, S.M., 2001. Relationship between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2 (4): 1-24.
Nesbitt, H.W. & Young, G.M., 1982. Early Proterozoic climate and plate motions inferred from major element chemistry of lutites. Nature. 299: 715–717.
Paikaray, S., Banerjee, S., & Mukherji, S., 2008. Geochemistry of shales from the Paleoproterozoic to NeoproterozoicVindhyan Supergroup: Implications on provenance, tectonics and paleoweathering. Journal of Asian Earth Sciences, 32: 34–48.
Pettijohn, F.J., Potter, P.E., & Siever, R., 1987. Sand and Sandstone, 2nd Ed. Springer, New York. 553 p.
Potter, P.E., 1978. Petrology and chemistry of modern Big River sands. J. Geol., 86: 423–449.
Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, New York. 352 pp.
Roser, B.P., & Korsch, R.J., 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Geology, 94: 635–650.
Roser, B.P. & Korsch., R.J., 1988. Provenance signature of sandstone-mudstone suite determined using discriminate function analysis of major element data. Chemical Geology, 67: 119–139.
Roser, B.P., Cooper, R.A., Nathan, S., & Tulloch, A.J., 1996. Reconnaisance sandstone geochemistry, provenance and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics, 39 (1): 1-16
Schieber, J., 1992. A combined petrographical-geochemical provenance study of the Newland formation, Mid-Proterozoic of Montana. Geological Magazine, 129: 223–237.
Shadan, M., & Hosseini-Barzi, M., 2007. Local tectonic controls on deposition of Permian mixed siliciclastic-carbonate deposits of Khan Formation along Kalmard fault, Central Iran. 5th Swiss Geoscience Meeting, Geneva.
Shadan, M., & Hosseini-Barzi, M., 2013. Petrography and geochemistry of the Ab-e-Haji Formation in central Iran: implications for provenance and tectonic setting in the southern part of the Tabas block. Revista Mexicana de Ciencias Geologicas, 30 (1): 80-95.
Suttner, L.J., Basu, A., & Mack, G.M., 1981. Climate and the origin of quartz arenites. Journal of Sedimentary Petrology, 51: 1235–1246.
Suttner, L.J., & Dutta, P., 1986. Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Petrology, 56: 329-345.
Suttner, L.J., & Dutta, P., 1986. Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Petrology, 56: 329-345.
Taylor, S.R., & McLennan, S.M., 1985. The Continental Crust: its Composition and Evolution. Blackwell, Oxford, 312 p.
Tortosa, A., Palomares, M., & Arribas, J., 1991. Quartz grain types in Holocene deposits from Spanish Central System: some problems in provenance analysis. In: Morton A.C., Todd, S.P., & Haughton, P.D.W., (Eds.), Developments in Sedimentary Provenance Studies. Special Publication Geological Society, 57: 47-54.
Tucker, M.E., 2001, Sedimentary Petrology, 3rd Edition. Blackwell, Oxford, 260p.
Weltje, G.J., 1994. Provenance and dispersal of sand-sized sediments: Reconstruction of dispersal patterns and sources of sand-sized sediments by means of inverse modelling techniques. Faculteit Aardwetenschappen, Universiteit Utrecht. 121: 1-208.
Wronkiewicz, D.J., & Condie, K.C., 1987. Geochemistry of Archaean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochimica. Cosmochimica. Acta, 51: 2401-2416.
Young, G.M., 2002. Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations: relevance to the snowball Earth debate. Journal of African Earth Sciences, 35: 451–466.
CAPTCHA Image