Chemostratigraphy of the Qom Formation by considering its influence on palaeotemprature determination in Dobaradar section, south east of Qom

Document Type : مقالات پژوهشی

Authors

1 Kharazmi university

2 Kharazmi

Abstract

Introduction
Chemostratigraphy is a part of stratigraphy which study chemical changes of sedimentary units in a sequence. Nowadays, the changes of elements in carbonate sediments use as a criteria for the detection of their old sediments equivalents (Adabi, 2004). Marine carbonate rocks often contain low and high magnesium calcite and aragonite which their frequency are not constant in the environment, and their changes depend on environmental factors such as temperature, salinity, carbon dioxide, pressure and the ratio of magnesium to calcium (Rao, 1996).  Kasaei Najafi (1993) investigated the elements of Sr, Na, Mn, Fe, Ca from the Qom deposits in south to southeast of Qom city and determined a concentration of elements in carbonate rocks depend on the microfacies features.  Okhravi (1999) considered a concentration of rare elements and their relation to the facies by studying of  "f " Member in the same areas. The study area and the stratigraphic section are available through the Tehran-Qom and the cross road of Qom-Jamkaran. This area belong to Central Iran Zone which is formed by collision of Arabian-African plate to Iranian plate. Central Iran connected eastern and western Tethys (Schuster & Wielandt, 1999; Reuter et al., 2009; Mohammadi et al., 2011) and the Qom Formation was deposited during the final marine transgression in Central Iran Basin during the Oligo-Miocene (Daneshian & Ramezani Dana, 2007; Reuter et al., 2009; Seddighi et al., 2012; Mohammadi et al., 2011, 2013, 2015; Daneshian et al., 2017). Dozy (1944) was the first  geologist that  used the term of  Qom Formation for marl and limestone of shallow water with high variations in facies and was not permitted  to introduce a type section for this formation in southern Qom plain by having good outcrops and considerable thickness (Bozorgnia, 1966; Stocklin & Setudehnia, 1971; Hadavi et al., 2010).
Methods and Materials
The sedimentary sequence of the studied section consists of a, b, c-1, c-2, c-3, c-4, d, e, f and g members with 1328 meters thickness. 676 samples, systematically, collected with approximate intervals of 0.5 to 3 meters. Among them, 30 samples were selected based on lithological characteristics and stratigraphic boundaries of the members for the purpose of investigation of elements and their changes. The specimens were powdered up to 60 microns and these specimens were analyzed by the ICP AES method for understanding the variations of Ca, Mg, Fe, Na, Zn, Mn, Sr elements, and Mg / Ca ratio.  Then, the variations of the examined elements compared to the benthic and planktic foraminifera diversity. Among the diversity of benthic species, the type of test (agglutinated, hyaline and porcelaneous) were determined separately for recognition of the paleotemperature changes.
Results and Discussion
The chemical analysis of elements including Ca, Mg, Fe, Mn, Na, Zn, Sr, and changes in species diversity of benthic foraminifera indicate sharp variations of the elements in the lower part of the succession between  "a" to "e" members, while in the upper parts of the section, "f" and "g" members, the variations are not very sharp. Also, the highest rate of variation for elements is observed in the base of the studied sequence, in the boundary between "b" and "c-1" members especially for Manganese, and in the boundary between "d" and "e" members for Strontium. All elements other than Manganese significantly reduced on the boundary between "b" to "c-1" members, but between "d" and "e" members, all the elements show increasing trend, except Sodium, Manganese and Strontium which indicate deduction and the greatest decreasing  is belong to the Strontium. Besides, species diversity changes of the foraminifera, particularly benthic forms show a definite increase between the boundary of "d" and "e" members.
In general, the high variation of the species diversity of benthic foraminifera suggests a relative increase in temperature of the paleoenvironment. Reducing the species diversity at the boundary of "d' Member depends on changes in the depth of sedimentary environment and existing the evaporate environment. 
In the "e" Member, the diversity of the benthic and planktonic foraminifera show an increasing trend that indicates a high temperature in the environment. In "g" Member, the diversity of foraminifera is low at the base, and is almost constant.  It seems the temperature with a slight increase has reached to a relative stability in this part. But due to the gradual decrease in the depth of the environment at the end of the stratigraphic section and the sea level fall, appear faunal changes to be affected by changes in environment depth.
Conclusion
Study of the elements and their variations along the examined section show the high variety at the bottom (Aquitanian), and a low variety at top with Burdigalian age. This state of variations is observed in foraminiferal diversity changes and corresponds to palaeoenvironmental conditions. Fluctuations of the elements, especially Magnesium and Mg/Ca ratio with foraminifer’s diversity changes are environmental indicators and show paleotemperature changes. Increasing concentration of Mg and the proportion of Mg / Ca ratio in the most samples coordinate with increment of foraminifer’s diversity. Both are indicators of increasing of paleotemperature in the Qom basin. These evidences show that the Qom sedimentary basin during Burdigalian were warmer than Aquitanian in Dobaradar section. In fact, the temperature fluctuations at the Aquitanian and Burdigalian are relatively high, and in the middle part of the Burdigalian, and maximum at the beginning of the Late Burdigalian, there is a relative stabile in temperature. 
Keywords: Chemostratigraphy; Paleotemperature; Qom Formation; Type area.
References
Adabi, M.H., 2004. Sedimentary geochemistry. Arian Zamin publication, 447 p.(in Persian).
Bozorgnia, F., 1966. Qom Formation stratigraphy of the Central Basin of Iran and its intercontinental position. Bulletin of Iranian Petroleum Institute, 24: 69-75.
Dozy, J.J., 1944. Comments on geological report No. 1, by thiebaud (on Qum-Saveh area). Geological report, 308 p.
Kasaei Najafi, M., 1993.  Sedimentary environment and diagenesis of "f" Member limestone of the Qom Formation with rare elements. M.Sc. Thesis, Tehran University.
Hadavi, F., Notghi, M., & Mousazadeh, H., 2010. Burdigalian-Serravalian calcareous nannoplanktons from Qom Formation, North Center Iran. Arabian Journal of Geoscience, 3: 133-139.
Mohammadi, E.A., Safari, H., Vaziri-Moghaddam, M.R., Vaziri,  M., & Ghaedi, M., 2011. Microfacies analysis and paleoenviornmental interpretation of the Qom Formation, South of the Kashan, Central Iran. Carbonates Evaporates, 26: 255-271.
Mohammadi, E., Hasanzadeh-Dastgerdi, M., Ghaedi, M., Dehghan, R., Safari, A., Vaziri-Moghaddam, H., Baizidi, C., Vaziri, M., & Sfidari, E., 2013. The Tethyan Seaway Iranian Plate Oligo-Miocene deposits (the Qom Formation): distribution of Rupelian (Early Oligocene) and evaporate deposits as evidences for timing and trending of opening and closure of the Tethyan Seaway. Carbonates Evaporites, 28: 321-345.
Mohammadi, E., Vaziri, M., & Dastanpour, M., 2015. Biostratigraphy of the nummulitids and lepidocyclinids bearing Qom Formation based on larger benthic foraminifera (Sanandaj-Sirjan fore-arc basin and Central Iran back-arc basin, Iran). Arabian Journal of Geosciences, 8: 403-423.
Okhravi, R., 1999. Trace elements study on the mixed Carbonate-pyroclastic sediments (Lower Miocene, Central Basin, Iran). Journal of science, 10: 706.
Rao, C.P., 1996. Modern Carbonates, tropical, temperate, polar: introduction to sedimentology and geochemistry. Arts of Tasmania, 206 p.
Reuter, M., Piller, W.E., Harzhauser, M., Mandic, O., Berning, B., Rogl, F., Kroh, A., Aubry, P., Wielandt-Schuster, U., & Hamedani, A., 2009. The Oligo-Miocene Qom Formation (Iran): evidence for an early Burdigalian restriction of the Tethyan seaway and closure of its Iranian gateways. Journal of Earth Science, 98: 627-650.
Schuster, F., & Wielandt, U., 1999. Oligocene and Early Miocene coral faunas from Iran: palaeoecology and palaeobiogeography. International  Journal of Earth Sciences, 88: 571-581.
Seddighi, M., Vaziri-Moghaddam, H., Taheri, A., & Ghabeishavi, A., 2012. Depositional environment and constraining factors on the facies architecture of the Qom Formation, Central Basin, Iran. Historical Biology, 24: 91-100.
Stocklin, J., & Setudehnia, A., 1971. Stratigraphic Lexicon of Iran. Geological Survey of Iran, Report No. 18.

Keywords


آدابی، م.ح.، 1383. ژئوشیمی رسوبی. نشر آرین زمین، 447 ص.
آقانباتی، ع.، 1389. زمین شناسی ایران. سازمان زمین شناسی و اکتشاف معدنی کشور، 586 ص.
امامی، م.ه.، 1370. نقشه زمین شناسی قم، مقیاس 250000/1. سازمان زمین شناسی و اکتشاف معدنی کشور.
امامی، م.ه.، 1371. نقشه زمین شناسی آران، مقیاس 250000/1. سازمان زمین شناسی و اکتشاف معدنی کشور.
امرایی، ج.، 1384. دیاژنز و ژئوشیمی بخش‌های آهکی سازند قم (a، c-1، c-3 وf) در مقاطع نرداقی بخش a، دوچاه بخش a، دوبرادر بخش‌های f, c-3, c-1 و کمرکوه بخش f. پایان نامه کارشناسی ارشد، دانشگاه خوارزمی.
باغبانی، د.، الهیاری، م.، شاکری، ع.، 1375. بررسی حوضه رسوبی و توان هیدروکربوری، چینه شناسی، چرخه‌های رسوبی و گسل‌های فعال نواحی تکتونیکی ـ رسوبی و جغرافیای دیرینه قم. طرح و پروژه اکتشافی شرکت ملی نفت ایران.
درویش‌زاده، ع.، 1370. زمین شناسی ایران. نشر دانش امروز (وابسته به مؤسسه امیرکبیر).
حیدری، ا.، محبوبی، ا.، موسوی حرمی، س.ر.، 1388. تفسیر تاریخچه دیاژنز سنگ‌های کربناته سازند چهل‌کمان (پالئوسن پسین) در غرب حوضه رسوبی کپه داغ. فصلنامه زمین شناسی ایران، 3 (12): 13ـ 26.
رحیم‌زاده، ف.، 1373. زمین شناسی ایران: الیگوسن، میوسن و پلیوسن در ایران. سازمان زمین شناسی و اکتشاف معدنی کشور.
کسایی نجفی، م.، 1372. محیط رسوبی و دیانژ آهک f سازند قم از طریق عناصر کمیاب. پایان نامه کارشناسی ارشد،
دانشگاه تهران.
Abaie, I., Ansari, H.J., Badakhshan, A., & Jaafari, A., 1964. History and development of the Alborz and Sarajeh fields of Central Iran. Bulletin of Iranian Petroleum Institute, 15: 561-574.
Abbas Ali, R., 2012. Mn distribution in the carbonate fraction of shallow Marine lithofacies, lower Miocene, Wadi Fuhaimi and Anah twon (western Iraq). Diyala Journal for Pure Science, 8: 131-150.
Adams, C.G., Gentry, A.W., & Whybrow, P.J., 1983. Dating the terminal Tethyan event. Utrecht Micropaleontol Bulletin, 30: 273-298.
Bozorgnia, F., 1966. Qum Formation stratigraphy of the Central Basin of Iran and its intercontinental position. Bulletin of Iranian Petroleum Institute, 24: 69-75.
Daneshian, J., & Ramezani Dana, L., 2007. Early Miocene benthic foraminifera and biostratigraphy of Qom Formation, Deh Namak, Central Iran. Journal of Earth Sciences, 29: 844-858.
Daneshian, J., Ramezani Dana, L., & Sadler, P., 2017. A composite foraminiferal biostratigraphic sequence for the Lower Miocene deposits in the type area of the Qom Formation, central Iran, developed by constrained optimization (CONOP). Journal of African Earth Sciences, 125: 214-229
Dozy, J.J., 1944. Comments on geological report No.1, by thiebaud (on Qum - Saveh area). Geological report, 308 p.
Faridman, M.G., 1969. Trace elements as possible environmental indicator in carbonate sediments. Society of Economic paleontologistsb & mineralogist, 14: 193-198.
Fantle, M.S., & Higgins, J., 2014. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine plat form Carbonates: Implications for the geochemical cycles of Ca and Mg. Geochimica ET Geochimica Acta, 142: 458-481.
Flugle, E., 2004. Microfacies of carbonate rocks, analysis interpretation and application. Springer, 976 p.
Fritz, P., & Katz, A., 1972. The sodium distribution of dolomit crystals. Chemical Geology, 10: 237-244.
Furrer, M.A., & Soder, P.A., 1955. The Oligo-Miocene marine Formation in the Qom region (Central Iran). Process 4th World Petroleum Congress, Rom. sect. I/A/5, 267-277.
Gansser, A., 1955. New aspects of the geology in Central Iran. Process 4th World Petroleum Congress, Rom. sect. I/A/5, 279-300.
Graf, L., 1960. Geochemistry of carbonate sediments and sedimentary rock part 2&3, minor Element Distribution. 1 llinois state Geological survey circular, 298 p.
Jenkins, H.C., Jones, Ch.E., Grocke, D.R., Hesselbo, S.P., & Parkinson, D.N., 2002. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. Journal of the Geological Society, 159: 351-378.
Hadavi, F., Notghi, M., & Mousazadeh, H., 2010. Burdigalian - Serravalian calcareous nannoplanktons from Qom Formation, North Center Iran. Arabian Journal of Geoscience, 3: 133-139.
Kinsman, J.J., 1969. Interpretation of strontium concentration in carbonate minerals & rocks. Journal of sedimentary petrology, 39: 486-508.
Mohammadi, E.A., Safari, H., Vaziri-Moghaddam, M.R., Vaziri, M., & Ghaedi, M., 2011. Microfacies analysis and paleoenviornmental interpretation of the Qom Formation, South of the Kashan, Central Iran. Carbonates Evaporates, 26: 255-271.
Mohammadi, E., Hasanzadeh-Dastgerdi, M., Ghaedi, M., Dehghan, R., Safari, A., Vaziri-Moghaddam, H., Baizidi, C., Vaziri, M., & Sfidari, E., 2013. The Tethyan Seaway Iranian Plate Oligo-Miocene deposits (the Qom Formation): distribution of Rupelian (Early Oligocene) and evaporate deposits as evidences for timing and trending of opening and closure of the Tethyan Seaway. Carbonates Evaporites, 28: 321-345.
Mohammadi, E., Vaziri, M., & Dastanpour, M., 2015. Biostratigraphy of the nummulitids and lepidocyclinids bearing Qom Formation based on larger benthic foraminifera (Sanandaj-Sirjan fore-arc basin and Central Iran back-arc basin, Iran). Arabian Journal of Geosciences, 8: 403-423.
Morse, J.W., & Mackenzie, F.T., 1990. Geochemistry of Sedimentary Carbonates: New York. Elsevier, 707 p.
Okhravi, R., 1999. Trace elements study on the mixed Carbonate - pyroclastic sediments (Lower Miocene, Central Basin, Iran). Journal of science, 10: 706.
Nabavi, S.M.B., Moosapanah, S.GH.R., Rajab Zadeh, E., & Ghayyem, M., 2014. Distribution, Diversity and Abundance of Benthic Foraminifera of the Northwstern Persian Gulf. Journal of the Persian Gulf (Marine Science), 5: 15-26.
Phipps, M.D., Kaminski, M., & Aksu, A., 2010. Calcareous benthic foraminiferal biofacies along a depth transect on the southwestern Marmara shelf (Turkey). Micropaleontology, 56: 377-392.
Pingitore, N.E., 1978. The behavior of Zn and Mn during carbonate digenesis: Theory and application. Journal of Sedimentray of Pterology, 48: 799-814.
Pingitore, N.E., Eastman, M.P., Sandidge, M., Oden, K., & Freiha, B., 1988. The coprecipitation of manganese (II) with calcite: an experimental study. Marine Chemistry, 25: 107-120.
Powell, M.G., Bernd, R.S., & Dorrit, E.J., 2009. Tropical marine during the Late Paleozoic ice age using trace element analyses of brachiopods. Palaeogeography, Palaeoclimatology, Palaeoecology, 280: 143-149.
Rao, C.P., 1996. Modern Carbonates, tropical, temperate, polar: introduction to sedimentology and geochemistry. Arts of Tasmania, 206 p.
Rao, C.P., & Adabi, M.H., 1992. Carbonate minerals, major and minor element and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia. Marin Geology, 103: 249-272.
Reuter, M., Piller, W.E., Harzhauser, M., Mandic, O., Berning, B., Rogl, F., Kroh, A., Aubry, P., Wielandt-Schuster, U., & Hamedani, A., 2009. The Oligo - Miocene Qom Formation (Iran): evidence for an early Burdigalian restriction of the Tethyan seaway and closure of its Iranian gateways. Journal of Earth Science, 98: 627-650.
Rodrigues, R., 2005. Applied Stratigraphy. Topics in Geobiology, 23: 165-178.
Rogl, F., & Steininger, F.F., 1984. Neogene Paratethys, Mediterranean and Indo-Pacific Sea way. In: Brenchley, P., (ed.), Fossils and climate. Wiley, Chister, 171-200.
Rosenthal, Y., Lear, C.H., Oppo, D., Braddock, W., & Linsley, B.K., 2006. Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans. Paleocenography, 21: 1-14.
Schuster, F., & Wielandt, U., 1999. Oligocene and Early Miocene coral faunas from Iran: palaeoecology and palaeobiogeography. International Journal of Earth Sciences, 88: 571-581.
Seddighi, M., Vaziri-Moghaddam, H., Taheri, A., & Ghabeishavi, A., 2012. Depositional environment and constraining factors on the facies architecture of the Qom Formation, Central Basin, Iran. Historical Biology, 24: 91-100.
Stocklin, J., & Setudehnia, A., 1971. Stratigraphic Lexicon of Iran. Geological Survey of Iran, Report, No.18.
Swart, P.K., 1981. The strontium, magnesium and sodium composition of recent scleractinian coral skeletons as standards for palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 34: 115-136.
Tripati, A.K., Delaney, M.L., ZachosAnderson, J.C., Kelly, L.D., & Elderfield, H., 2003. Tropical sea-surface temperature reconstruction for the early Paleogene using Mg/Ca ratios of planktonic foraminifera. Paleoceanography, 18: 25-40.
Viezer, J., & Demovic, R., 1974. Strontim as a tool in facies analysis. Journal Of sedimentary petrology, 44: 93-115.
Winefield, P.R., Nelsion, C.S., & Hodder, P.W., 1996. Discriminating temperate carbonates and their diagenetic environments using bulk elemental geochemistry: a reconnaissance study based on New Zealand Cenozoic limestones. Carbonates and Evaporites, 11: 19-31
Zhao, M.Y., & Zheng, Y.F., 2014. Marine Carbonatr records of terregenous input into Paleotethyan seawater: Geochemical Constraints from Carboniferous limestones. Geochimica ET Cosmochimica Acta, 141: 508-531.
Yasuhara, M., & Danovaro, R., 2014. Temperature impacts on deep-sea biodiversity. Biological Reviews, 91 (2): 275-287.
CAPTCHA Image