Stratigraphy, microfacies and sedimentary environment of the Qom Formation at Madabad celestite deposit, south of Zanjan

Document Type : مقالات پژوهشی

Authors

1 University of Zanjan

2 Zanjan

Abstract

Introduction
The Qom Formation was deposited at the north-eastern coast of the Tethyan Seaway, in the Oligocene - Miocene, during the final sea transgression, in Central Iran (Reuter et al., 2009). Although the Mohammadi et al. (2013) believe that above 35˚N (including the study area in this research) deposition of the Qom Formation started during the Miocene. It is essential and important to study different properties of the oil-bearing Qom Formation because of economic importance and communicative role between Eastern Tethys (the proto-Indian Ocean) and the Western Tethys region (the proto-Mediterranean Sea) in the Iranian Plate at the same time (Mohammadi et al., 2013). Furrer & Soder (1955) subdivided the Oligocene-Miocene marine strata of the Qom Formation in the type locality of the formation near the town of Qom, into six members (a-f members: a-member basal limestone, b-member sandy marls, c-member alternating marls and limestones, d-member evaporites, e-member green marls and f-member top limestone). In the Zanjan area, only f-member of the Qom Formation has been deposited (Aghanabati, 2004). In general, the f-member consists of light colored, porous, in part chalky and in part cemented limestone. Although many studies have carried out for nearly four decades on the f-member of the Qom Formation outcrops in Central Iran back-arc basin (which they are listed in Mohammadi et al., 2013), stratigraphical, microfacies analysis and sedimentary environments studies of the f-member of the Qom Formation deposits of the Zanjan area has been the subject of only a few studies. So, here for the first time, we document and discuss the results of detailed fieldwork and microfacies analysis from the early Miocene carbonate platform succession in the south of Zanjan (f-member of the Qom Formation).
 
Materials and Methods
This study involves one stratigraphic section that was measured bed by bed and investigated sedimentologically.
During the fieldwork study, detailed stratigraphic sections were measured, sampled and described with respect to carbonate facies and biota. The petrographic description is based on approximately 73 thin sections. Thin sections were stained using the method of Dickson (1965) to distinguish ferron and non-ferron calcite from dolomite. The petrographic classification for carbonates is based on Dunham limestone classification (Dunham, 1962). Flügel (2010) facies belts and sedimentary models were also used. The composition of associated fauna (presence of red-algae, coral, benthic foraminifer and echinoderm) and non-skeletal grains (e.g. intraclasts and peloids) was considered. Sedimentologic texture and structure (e.g. crossbedding, dolomitization, presence of silt-size quartz grains, boring and burrowing) have been considered qualitatively.
 
Discussion
The Qom Formation in the Madabad celestite deposit (south of Zanjan), lithologically composed of 190 m of medium to thick-bedded and massive limestone and marly limestone. In this area, the Qom Formation is conformably overlies the clastic rocks of the Lower Red Formation and is in turn conformably overlain by the Upper Red Formation. In detail, the Qom Formation in the study area consist of 7 lithostratigraphic units as follow from base to top of the formation: 1) thin to medium-bedded limestone with interbedded of thin-bedded argillaceous limestone, 2) thick-bedded coral-bearing limestone, 3) thick-bedded limestone with interlayers of marly limestone, 4) thin-bedded marly limestone, 5)  thick-bedded echinoderm-bearing limestone with interlayers of marly limestone, 6) thin-bedded marly limestone and finally  and 7) thick-bedded to massive limestone with interlayers of marly limestone.
The main components of the Qom Formation contain benthic foraminifera with hyaline test, coral, red algae with less frequency of planktonic foraminifera. Due to the abundance of red-algae, larger benthic foraminifera and micrite, the Qom Formation platform facies is referred to as “red algae foraminifera dominated packstone”. Field and microscopic studies led to identification of five microfacies in the limestone units of the Qom Formation in the Madabad area. These microfacies, ordered from shallower to deeper environments, include: A) red algae coral packstone, B) red algae bioclast packstone to wackestone, C) perforate benthic foraminifera packstone to wackestone, D) red algae echinoderm wackestone and E) planktonic foraminifera red algae bioclast wackestone.
In general, microanalysis and paleoenviornmental interpretation of the Qom Formation show that this formation was deposited in a variable depositional system. The Qom Formation facies are dividable to four facies as follow: alluvial-deltaic facies carbonate platform-evaporatic facies, slope facies and basin facies (deep sea facies) (Rahimzadeh, 1994). Microfacies analysis including abundant hyaline-test benthic foraminifera as well as the lack of restricted lagoon microfacies show that in the Madabad section, the Qom Formation was deposited in open marine environment. According to recognized microfacies and absences of gravity deposits (turbidites), real and continuous reef, barrier and storm structures, carbonate platform of the Qom Formation developed on an open shelf without effective barriers separating it from the sea. In detail, the distribution of foraminifera and other components, in addition to the vertical microfacies relationships indicate that facies model of the Qom Formation in this section was distal-inner to middle shelf. The distal inner shelf including only the (A) microfacies and the other recognized microfacies (B-E) deposited through the proximal to distal parts of the middle shelf. Proximal middle shelf is characterized by larger benthic foraminifera with hyaline wall in addition to red algae and distal middle shelf is dominated by planktonic foraminifera and red algae. 
 
Conclusion
The Qom Formation in the Madabad celestite deposit (south of Zanjan), lithologically composed of 190 m limestone and marly limestone. Field and microscopic studies led to identification of five microfacies. Distribution of foraminifera and other components, in addition to the vertical microfacies relationships indicate that facies model of the Qom Formation in this section was distal-inner to middle shelf platform.
 
Keywords: Lithostratigraphy; Microfacies; Sedimentary environment; Qom Formation; Madabad; Zanjan.
 
Reference
Aghanabati, A., 2004. Geology of Iran. Geological Survey of Iran, 1-622 (in Persian).
Dickson, J.A.D., 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology, 36: 491-505.
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E., (ed.), Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, 1: 108-121.
Flügel, E., 2010. Microfacies of carbonate rocks, analysis interpretation and application. 2nd edition Springer-Verlag, Berlin Heidelberg, 1-976.
Furrer, M.A., & Soder, P.A., 1955. The Oligo-Miocene Formation in the Qom region (Iran). Processing of 4th World Petroleum Congress, 6-15 June, Roma, Italy, 267-277.
Mohammadi, E., Hasanzadeh-Dastgerdi, M., Ghaedi, M., Dehghan, R., Safari, A., Vaziri-Moghaddam, H., Baizidi, Ch., Vaziri, M.R., & Sfidari, E., 2013. The Tethyan Seaway Iranian Plate Oligo-Miocene deposits (the Qom Formation): distribution of Rupelian (Early Oligocene) and evaporate deposits as evidences for timing and trending of opening and closure of the Tethyan Seaway. Carbonates and Evaporates, 28: 321-345.
Rahimzadeh, F., 1994. Geology of Iran: Oligocene-Miocene, Pliocene. Geological Survey of Iran (in Persian).
Reuter, M., Piller, W.E., Harzhauser, M., Mandic, O., Berning, B., Rogl, F., Kroh, A., Aubry, M.P., Wielandt-Schuster, U., & Hamedani, A., 2009. The Oligo-Miocene Qom Formation (Iran): Evidence for an Early Burdigalian restriction of Tethyan Seaway and closure of its Iranian gateways. International Journal of Earth Sciences, 98: 627-650.

Keywords


آقانباتی، س.ع.، 1383. زمین‌شناسی ایران. انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور، 1ـ586.
پورمحمدی، س.، 1392. سکانس استراتیگرافی و بیوفاسیس سازند قم در برش دهشیر بالا (جنوب غرب زنجان). پایان نامه کارشناسی ارشد، دانشگاه ارومیه، 1ـ291.
حسینی‌نژاد، س.م.، رامه، ح.، اهری‎پور، ر.، 1395. زیست‎ چینه ‌نگاری و محیط رسوبی سازند قم در برش تلن‌کوه (جنوب باختری سمنان). رسوب‌شناسی کاربردی، 7 : 101ـ116.
ربانی، ج.، زهدی، ا.، 1396. تحلیل شرایط پالئواکولوژی کلنی‌های مرجانی ریف‌ساز میوسن پیشین در شمال باختر زنجان. چهارمین همایش منطقه‌ای تغییر اقلیم و گرمایش زمین، دانشگاه تحصیلات تکمیلی علوم پایه زنجان، 5 ص.
شهیدی، ع.، بهار فیروزی، خ.، 1380. نقشه زمین شناسی چهار گوش 1:100000 حلب. سازمان زمین شناسی و اکتشافات معدنی کشور.
عالی‌پور، ش.، 1396. دیرینه شناسی و محیط رسوبی سازند قم در منطقه قمچقای، جنوب غرب زنجان. پایان نامه کارشناسی ارشد، دانشگاه زنجان، 1ـ102.
عالی‌پور، ش.، میرزایی عطاآبادی، م.، زهدی، ا.، رحمانی، ع.، 1395. چینه شناسی و ریزرخساره‌های سازند قم در منطقه قمچقای، جنوب زنجان. یازدهمین همایش انجمن دیرینه‌شناسی ایران، دانشگاه پیام نور طبس، ص 190.
علوی نائینی، م.، 1372. نقشه زمین شناسی 1:10000 خدابنده ـ سلطانیه. سازمان زمین شناسی و اکتشافات معدنی کشور.
محمدی، ا.، وزیری، م.، داستانپور، م.، 1393. بررسی ریزرخساره‌ها و بازسازی محیط رسوب‌گذاری سازند قم در ناحیه سیرجان، جنوب غرب کاشان. پژوهش های رسوب شناسی و چینه نگاری، 2: 35ـ54.
محمدیان اصفهانی، م.، صفری، ا.، وزیری مقدم، ح.، 1392. بررسی ریزرخساره‌ها و محیط رسوبی سازند قم در ناحیه بیجگان (شمال شرق دلیجان). رخساره‌های رسوبی، 6: 65ـ76.
نوری، م.، کوهستانی، ح.، نباتیان، ق.، مختاری، م.ع.، زهدی، ا.، 1395. ویژگی‌های زمین شناسی و کانه‌زایی کانسار سلستین مادآباد، جنوب ـ جنوب باختر زنجان. سی و پنجمین گردهمایی علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور، 1ـ7.
Adams, T., & Bourgeois, F., 1967. Asmari biostratigraphy. Iranian Oil Operating Companies Geological and Exploration Division, Unpublished Report 1074, 1-37.
Amirshahkarami, M., & Karavan, M., 2015. Microfacies models and sequence stratigraphic architecture of the Oligocenee-Miocene Qom Formation, south of Qom City, Iran. Geoscience Frontiers, 6: 593-604.
Amirshahkarami, M., 2008. Distribution of Miogypsinoides in the Zagros Basin, in southwest Iran. Historical Biology, 20: 175-184.
Amirshahkarami, M., Vaziri Moghaddam, H., & Taheri, A., 2007. Paleoenvironmental model and sequence stratigraphy of the Asmari Formation in southwest Iran. Historical Biology, 19: 173-183.
Baccelle, L., & Bosellini, A., 1965. Diagrammi per la stima visive della composizione percentuale nell rocce sedimentarite. Annali della Universitia di Ferrara, Sezione IX. Science Geologiche e Paleontologiche, 1: 59-62.
Barattolo, F., Bassi, D., & Romano, R., 2007. Upper Eocene larger foraminiferal-coralline algal facies from the Klokova Mountain (southern continental Greece). Facies, 53: 361-375.
Bassi, D., Hottinger, L., & Nebelsick, J.H., 2007. Larger foraminifera from the upper Oligocene of the Venetian area, northeast Italy. Paleontology, 50: 845-868.
Bozorgnia, F., 1966. Qum Formation stratigraphy of the central basin of Iran and its intercontinental position. Bulletin of the Iranian Petroleum Institute, 24: 69-76
Brandano, M., & Corda, L., 2002. Nutrients, sea level and tectonics: constrains for the facies architecture of a Miocene carbonate ramp in central Italy. Terra Nova, 14: 257-262.
Brandano, M., Cornacchia, I., Raffi, I., & Tomassetti, L., 2017. The Oligocene-Miocene stratigraphic evolution of the Majella carbonate platform (Central Apennines, Italy). Sedimentary Geology, 333: 1-14.
Brandano, M., Frezza, V., Tomassetti, L., & Cuffaro, M., 2009. Heterozoan carbonates in oligotrophic tropical waters: The Attard member of the lower coralline limestone formation (upper Oligocene, Malta). Palaeogeography, Palaeoclimatology, Palaeoecology, 274: 54-63.
Daneshian, J., & Ramezani Dana, L., 2018. Foraminiferal biostratigraphy of the Miocene Qom Formation, northwest of the Qom, Central Iran. Frontiers of Earth Science, 12: 237-251.
Daneshian, J., & Ramezani Dana, L., 2007. Early Miocene benthic foraminifera and biostratigraphy of the Qom Formation, Deh Namak, Central Iran. Journal of Asian Earth Sciences, 29: 844-858.
Dickson, J.A.D., 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology, 36: 491-505.
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E., (ed.), Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, 1: 108-121.
Embry, A.F., & Kloven, J.E., 1971. A late Devonian reef tract on northeastern Banks Island, Northwest Territories. Bulletin of Canadian Petroleum Geology, 19: 730-781.
Flügel, E., 2010. Microfacies of carbonate rocks, analysis interpretation and application. 2nd edition Springer-Verlag, Berlin Heidelberg, 1-976.
Furrer, M.A., & Soder, P.A., 1955. The Oligo-Miocene Formation in the Qom region (Iran). Processing of 4th World Petroleum Congress, 6-15 June, Roma, Italy, 267-277.
Geel, T., 2000. Recognition of stratigraphic sequences in carbonate platform and slope deposits: Empirical models based on microfacies analysis of Paleogene deposits in southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 155: 211-238.
Habibi, T., & Ruban, D.A., 2017. The Oligocene carbonate platform of the Zagros Basin, SW Iran: An assessment of highly-complex geological heritage. Journal of African Earth Sciences, 129: 675-682.
Hottinger, L., 1983. Processes determining the distribution of larger foraminifera in space and time. Utrecht Micropaleont Bulltin, 30: 239-253.
Hottinger, L., 1997. Shallow benthic foraminiferal assemblage as signals for depth of their deposition and their limestones. Society Geology France Bulletin, 168: 491-505.
Leuttenger, S., 1984. Symbiosis in benthic foraminifera: specificity and host adaptations. Journal Foraminifera Research, 14: 16-35.
Mohammadi, E., Hasanzadeh-Dastgerdi, M., Ghaedi, M., Dehghan, R., Safari, A., Vaziri-Moghaddam, H., Baizidi, Ch., Vaziri, M.R., & Sfidari, E., 2013. The Tethyan Seaway Iranian Plate Oligo-Miocene deposits (the Qom Formation): distribution of Rupelian (Early Oligocene) and evaporate deposits as evidences for timing and trending of opening and closure of the Tethyan Seaway. Carbonates and Evaporates, 28: 321-345.
Mohammadi, E., Safari, A., Vaziri Moghaddam, H., Vaziri, M.R., & Ghaedi, M., 2011. Microfacies analysis and paleoenvironmental interpretation of the Qom Formation, south of the Kashan, Central Iran. Carbonates and Evaporates, 26: 255-271.
Mohammadi, E., Vaziri, M.R., & Dastanpour, M., 2015. Biostratigraphy of the Nummulitids and Lepidocyclinids bearing Qom Formation based on Larger Benthic Foraminifera (Sanandaj-Sirjan fore-arc basin and Central Iran back-arc basin, Iran). Arabian Journal of Geosciences, 8: 403-423.
Okhravi, R., & Amini, A., 1998. An example of mixed carbonate-pyroclastic sedimentation (Miocene, Central Basin, Iran). Sedimentology, 118: 37-54.
Pedley, H.M., 1998. A review of sediment distributions and processes in Oligo-Miocene ramps of southern Italy and Malta (Mediterranean divide). Geological Society of London Special Publications, 149: 163-179.
Pomar, L., & Ward, W.C., 1999. Reservoir-scale heterogeneity in depositional packages and diagenetic patterns on a reef rimmed platform, Upper Miocene, Mallorca, Spain. American Association of Petroleum Geologists, Bulletin, 83: 1759-1773.
Pomar, L., 2001. Ecological control of sedimentary accommodation: Evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands. Palaeogeography, Palaeoclimatology, Palaeoecology, 175: 249-272.
Reuter, M., Piller, W.E., Harzhauser, M., Mandic, O., Berning, B., Rogl, F., Kroh, A., Aubry, M.P., Wielandt-Schuster, U., & Hamedani, A., 2009. The Oligo-Miocene Qom Formation (Iran): Evidence for an Early Burdigalian restriction of Tethyan Seaway and closure of its Iranian gateways. International Journal of Earth Sciences, 98: 627-650.
Romero, J., Caus, E., & Rossel, J., 2002. A model for the Palaeoenviornmental distribution of larger foraminifera based on late to middle Eocene deposits on the margin of the south Pyrenean Basin (SE Spain). Palaeogeogrphy, Palaeoclimatology, Palaeoecology, 179: 43-56.
Sadeghi, R., Vaziri Moghaddam, H., & Taheri, A., 2009. Biostratigraphy and paleoecology of the Oligo-Miocene succession in Fars and Khuzestan areas (Zagros Basin, SW Iran). An International Journal of Paleobiology, 21: 17-31.
Salocchi, A.C., Argentino, C., & Fontana, D., 2017. Evolution of a Miocene carbonate shelf (northern Apennines, Italy) revealed through a quantitative compositional study. Marine and Petroleum Geology, 79: 340-350
Schuster, F., & Wielandt, U., 1999. Oligocene and early Miocene coral faunas from Iran: paleoecology and paleobiogeography. International Journal of Earth Sciences, 88: 571-581.
Seddighi, M., Vaziri-Moghaddam, H., Taheri, A., & Ghabeishavi, A., 2011. Depositional environment and constraining factors on the facies architecture of the Qom Formation, Central Basin, Iran. Historical Biology, 24: 91-100.
Vaziri Moghaddam, H., Seyrafian, A., Taheri, A., & Motiei, H., 2010. Oligocene Miocene ramp system (Asmari Formation) in the NW of the Zagros basin, Iran: Microfacies, paleoenvironment and depositional sequence. Revista Mexicana de Ciencias Ge logicas, 27: 56-71.
Vennin, E., Van Buchem, F.S.P., Joseph, p., Gaumet, F., Sonnenfield, M., Rebelle, M., Fakhfskh-Ben Jemaia, H., & Zijlstrra, H., 2003. A 3D outcrop analogue model for Ypresian nummulitic reservoirs: Jebel Qussalat, northern Tunisia. Petroleum Geoscience, 9: 145-161.
Wilson, J.L., 1975. Carbonate facies in geologic history. 1st edition, Springer-Verlag, New York, 1-471.
CAPTCHA Image