Biostratigraphy, microfacies and depositional environment of Asmari Formation in one of the Marun oil field wells and comparison with other Zagros area

Document Type : مقالات پژوهشی

Authors

1 Ferdowsi University of Mashhad

2 National Iranian South Oil Company (NISOC)

Abstract

Introduction
This study was aimed at the biostratigraphy and sedimentary environments reconstruction in one of the wells in Maroun oilfield at Dezful embayment zone. We also compared the studied sub-surface section with the equal intervals in Mala-Kuh, Ghale-Nar oilfield, Moshkan section, and Firouzabad section. The thickness of Asmari Formation in the studied well is 370.5 m and consists mainly of limestone, dolomite, dolomitic limestone, sandstone and argillaceous limestone. In this well, the lower boundary of the Asmari Formation with Pabdeh Formation and its upper boundary with Gachsaran Formation is continuous.
Method and Materials
For this study, 150 thin sections (mainly drilled cores) were studied in detail for paleontology, biostratigraphy, allochems identification, and microfacies determination. References such as Loeblich and Tappan (1980), Boudagher-Fadel, (2008), Adams & Bourgeois (1967), and other related articles were used to identify the available microfossils. We used the biozonation scheme of Laursen et al. (2009) and Van Buchem et al. (2010) to define and correlate the biozones. Classification of rock types was done according to Dunham (1962) and Embry & Klovan (1971), and microfacies identification and interpretation were carried out based on Wilson (1975), Buxton & Pedley (1989), Geel (2000), and Flugel (2010),
Results and Discussion
Based on paleontological studies, 43 genera and 61 species of benthic and planktonic foraminifera were identified. They have been classified into six zones (five assemblage zones and one indeterminate zone) as follows:
1- Globigerina spp.-Turborotalia cerroazulensis-Hantkenina Assemblage Zone
This biozone is 76 meters thick and lies between the depths of 3706.5 to 3630.5 m. It corresponds to the upper part of the Pabdeh Formation. In this biozone with Oligocene (Rupelian) age, Globigerina spp. are abundant, and the extinction of Turborotalia cerroazulensis occurs in this biozone.
2- Lepidocyclina-Operculina-Ditrupa Assemblage Zone
This biozone is 129.5 meters thick and lies between 3630.5 to 3501 m. The beginning of this biozone is based on the first occurrence of the Lepidocyclina sp. and Operculina complanata. Its end is marked by the first appearance of the Miogypsinoides compalanatus and Spiroclypeous blankenhorni. This biozone belongs to the Chattian-Rupellian age.
3- Archaias asmaricus-Archaias hensoni-Miogypsinoides compalanatus Assemblage Zone
The thickness of this biozone is 80 meters and lies between 3501 to 3421 meters deep. The onset of this biozone is marked by the first occurrence of Miogypsinoides compalanatus and Spiroclypeous blankenhorni. The first occurrence of Elphidium sp.14, Peneroplis farsensis and disappearance of Archaias distinguish the end of the biozone. The age of this biozone is Chattian.
4- Elphidium sp.14 – Peneroplis farsensis Assemblage Zone
This Assemblage zone is 83 meters thick and lies between 3421 to 3338 meters deep. The age of this biozone is Aquitanian. The onset of this biozone is determined by the occurrence of the Elphidium sp.14, Peneroplis farsensis, and the end of this biozone is characterized by a decrease in the fossil fauna assemblage known as the Ambiguous Zone.
5-Indeterminate Zone
With 70.44 meters thickness, this zone lies between the depths of 3338 to 3267.57 meters. A decrease in fossil assemblages characterizes this interval. According to its stratigraphic locality, this indeterminate zone is related to Aquitanian (Laursen et al., 2009). The fossils present in this biozone are very sparse and consist mainly of porcelaneous and indeterminate milliolids.
6- Borelis melo curdica-Borelis melo melo Assemblage Zone?
This biozone is related to the uppermost part of the Asmari Formation. The beginning of this biozone is defined based on the occurrence of the Borelis spp., continues to the end of the Asmari Formation. This biozone is 7.56 meters thick and lies between 3267.56 to 3260 meters deep. The age of this biozone is cautiously Burdigalian.
Based on the mentioned biozones, the age of Asmari Formation in the studied well is Rupelian – Chattian –?Burdigalian.
According to sedimentary texture, sedimentary structures, skeletal and non-skeletal elements in the microscopic studies if the provided thin section, 12 microfacies related to the outer ramp, middle ramp (distal and proximal parts), shoal and inner ramp environments (patch reef, lagoon (semi-restricted and restricted( and tidal flat were identified in the studied well. Gradual changes of facies to each other, the lack of coated structures, and the absence of coated grains are the main evidence suggesting deposition in a homoclinic carbonate ramp. Microfacies analysis shows that planktonic foraminifera in the upper part of the Pabdeh Formation belongs to the outer ramp. Due to the presence of large hyaline foraminifera, the lower part of the Asmari Formation is deposited in the distal part of the middle ramp, while the presence of lenticular foraminifera demonstrates the proximal ramp environment. A high-energy, shallow-shoal environment with the presence of thick-walled lenticular foraminifera, cementation, and grainstone textures characterize the boundary between the middle and the inner ramp. Inner ramp environment is considered by the presence of patchy corals (patch reef) and imperforate foraminifera (Archaias, Peneroplis, milliolids) of the lagoon (semi-restricted and restricted lagoon) and tidal flat zones.
References
Adams, T.D., & Bourgeois, F., 1967. Asmari biostratigraphy. Iranian Oil Operating Companies. Geological and Exploration Division, Report 1074: 1-37. (Unpublished)
Boudagher-Fadel, M.K., 2008. Evolution and Geological Significance of Larger BenthicForaminifera. Developments in Paleontology and Stratigraphy, 21. Elsevier, Amsterdam, p. 544.
Buxton, M.W.N., & Pedley, H.M., 1989. A standardized model for Tethyan Tertiary carbonates ramps. Journal of the Geological Society, London, 146: 746-748.
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E., (ed.), Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, 1: 108-121.
Embry, A.F., & Klovan, J.E., 1971. A Late Devonian reef tract on northeastern Banks Islands, Northwest Territories. Bulletin of Canadian Petroleum Geology, 19: 730-781.
Flügel, E., 2010. Microfacies of Carbonate Rocks, Analysis Interpretation and Application. Springer-Verlage, Berline, Heidelberg. 984 p.
Geel, T., 2000. Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Paleogene deposits in southeastern Spain. Paleogeography, Palaeoclimatology, Palaeoecology, 155: 211-238.
Laursen, G.V, Monibi, S., Allan, T.L., Pickard, N.A.H., Hosseiney, A., Vincent, B., Hamon, Y., Van Buchem, F.S.H., Moallemi, A., & Driullion, G., 2009. The Asmari Formation revisited: Changed stratigraphic allocation and new biozonation, First international petroleum conference & exhibition, Shiraz, Iran.
Loeblich, A.R.Jr., & Tappan, E., 1988. Foraminiferal genera and their classification. Van Nostrand Reinhold Campany, New York, 1-970.
Van Buchem, F.S.P., Allan, T.L., Laursen, G.V., Lotfpour, M., Moallemi, A., Monibi, S., Motiei, H., Pickard, N.A.H., Tahmasbi, A.R., Vedrenne, V., & Vincent, B., 2010. Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations), SW Iran. Geological Society, London, Special Publications, 329 (1): 219-263.
Wilson, J.L., 1975. Carbonate facies in geologic history. 1st edition, Springer-Verlag, New York, 1-471.

Keywords

Main Subjects


آقانباتی، ع.، 1385. زمین شناسی ایران. سازمان زمین شناسی و اکتشافات معدنی کشور، 586.
ابطحی، ز.، صیرفیان، ع.، 1390. زیست چینه ­نگاری و اجزای اسکلتی کربناته سازندهای آسماری و رازک در جنوب شرقی یاسوج (برش تنگ سرخ). پژوهش‌­های دانش زمین، 7: 78- 94.
انصاری، ع.، وزیری مقدم، ح.، طاهری، ع.، غبیشاوی، ع.، 1392. زیست چینه ­نگاری و پالئواکولوژی سازند آسماری در ناحیه تاقدیس نیل (شمال شرق دهدشت). دیرینه شناسی، 1 (2): 121-136.
آورجانی، ش.، موسوی حرمی، ر.، محبوبی، ا.، رحیم پور بناب، ح.، امیری بختیار، ح.، 1394. چینه نگاری سکانسی و بررسی کیفیت مخزنی سازند آسماری در فروافتادگی دزفول شمالی (میدان­‌های نفتی هفتکل، کوپال و مارون)، حوضه زاگرس، جنوب غرب ایران. رساله دکتری، دانشگاه فردوسی مشهد، 354 ص.
براری، م.، صیرفیان، ع.، وزیری مقدم، ح.، 1396. زیست چینه ­نگاری و ریزرخساره‌­های سازند آسماری در تاقدیس لار (شمال خاوری گچساران): تطابق زیست چینه­ای. زمین شناسی نفت ایران، 14: 49-73.
بینازاده، ط.، بینازاده، ع.، وفائی، ط.، 1396. ریزرخساره­‌ها، محیط رسوبی و چینه نگاری سازند آسماری در برش دشتروم (جنوب یاسوج). فصلنامه علوم زمین، 106: 169- 178.
پورامینی بزنجانی، س.، آدابی، م.ح.، حسینی برزی، م.، حناچی، ج.، 1391. میکروفاسیس، محیط رسوبی و دیاژنز بخش فوقانی سازندهای دالان و کنگان در ناحیه کوه سورمه، زاگرس چین خورده. پژوهش‌های چینه نگاری و رسوب شناسی، 28 (1): 55-74.
حبیبی، ط.، 1395. تطابق زیست چینه نگاری و مجموعه‌­های فرامینیفری توالی‌های الیگوسن در حوضه فارس. پژوهش‌­های چینه‌نگاری و رسوب شناسی، 65: 113- 134.
ذبیحی زوارم، ف، وحیدی‌نیا، م.، صادقی، ع.، امیری بختیار، ح.، محبوبی، ا.، 1394. زیست چینه نگاری و محیط رسوب‌گذاری سازند آسماری در تاقدیس‌های چناره ماله‌کوه و میدان نفتی قلعه نار. رساله دکتری دانشگاه فردوسی مشهد، 277 ص.
صادقی، ر.، فروزنده، خ.، محمدی، م، 1393. چینه شناسی و محیط رسوبی سازند آسماری در برش مشکان، جنوب شرق یاسوج. پژوهش‌­های چینه نگاری و رسوب شناسی، 58: 67-90.
طاهری، م.ر، وزیری مقدم، ح.، طاهری، ع.ا.، غبیشاوی، ع.، 1394. ریزرخساره­‌ها و محیط رسوبی سازند آسماری در زون ایذه (منطقه ایذه) حوضه رسوبی زاگرس. زمین شناسی نفت ایران، 10: 18- 45.
غلام‌پور موگهی، س.، وزیری مقدم، ح.، صالحی، م.ع، ارزانی، ن.، آرمون، ا.، 1396. زیست چینه نگاری و ریزرخساره­‌های سازندهای شهبازان و آسماری (گذر از ائوسن به الیگوسن) در نهشته‌­های کربناته شمال فروافتادگی دزفول حوضه رسوبی زاگرس. زمین شناسی نفت ایران، 13: 20–42.
فتحی میر، آ.، وحیدی‌نیا، م.، امیری بختیار، ح.، 1391. بایواستراتیگرافی سازند آسماری بر اساس روزن داران کف­زی (بزرگ شمال پل دختر). سی و یکمین گردهمایی علوم زمین، سازمان زمین شناسی و اکتشافات معدنی.
کلنات، ب.، وزیری مقدم، ح.، طاهری، ع.ا. 1389. زیست چینه نگاری و پالئواکولوژی سازند آسماری در جنوب غرب فیروزآباد. رخساره‌های رسوبی، 3 (1): 71-84.
کلنات، ب.، وزیری مقدم، ح.، وحیدی‌نیا، م.، 1393. مقایسه چینه نگاری سکانسی و محیط رسوبی سازند آسماری در نواحی فارس، خوززستان و لرستان از حوضه زاگرس. رخساره­های رسوبی، 7 (1): 107– 124.
محمدی، م.، امیری بختیار، ح.، امرایی، ف.، 1394. زیست چینه ­نگاری مقایسه‌­ای سازند آسماری در برش‌­هایی از تاقدیس‌­های ماله‌کوه و امیران بر پایه روزن بران کف‌­زی ناحیه لرستان، حوضه زاگرس، ایران. علوم زمین، 98: 191-198.
مطیعی، ه.، 1372. زمین شناسی ایران: چینه­ شناسی زاگرس. سازمان زمین شناسی و اکتشافات معدنی کشور، 536ص.
منیبی، س، نظری سامانی، پ.، 1393. مطالعه و بازنگرى سنى زیست چینه‌اى سازند آسمارى در یکى از میادین جنوب غرب ایران. پژوهش نفت، 84: 88-98.
نظافت، ع.، وحیدی‌نیا، م.، عاشوری، ع ر.، 1389. چینه نگاری زیستی و محیط رسوب‌گذاری سازند آسماری در یال جنوبی تاقدیس خویز (شمال شرق بهبهان). مجله علوم دانشگاه تهران، 36 (1): 119-128.
نیسی، ع.، قادری، ع.، غبیشاوی، ع.، الله‌کرم‌پور دیل، م.، 1396. زیست چینه ­نگاری، بررسی ریزرخساره­‌ها و چینه ­نگاری سکانسی سازند آسماری به کمک نرم افزار سیکلولاگ در میدان نفتی قلعه نار، حوضه زاگرس. زمین شناسی نفت ایران، 12: 22-44.
وزیری مقدم، ح.، عرب‌پور، ص.ا.، صیرفیان،ع.، طاهری، ع.ا، رحمانی، ع، 1394. چینه نگاری زیستی، محیط رسوبی و چینه‌نگاری سکانسی سازند آسماری در چاه شماره 4 میدان لب سفید (شمال فروافتادگی دزفول، جنوب غرب لرستان) و تنگ لنده (کوه سفید، شمال غرب دهدشت). زمین شناسی نفت ایران، 10: 87 – 119.
Adams, T.D., & Bourgeois, F., 1967. Asmari biostratigraphy. Iranian Oil Operating Companies. Geological and Exploration Division, Report 1074: 1-37. (Unpublished)
Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304: 1–20.
Allahkarampour Dill, M., Seyrafian, A., & Vaziri-Moghaddam, H., 2010. The Asmari Formation, north of the Gachsaran (Dill anticline), southwest Iran: facies analysis, depositional environments and sequence stratigraphy. Carbonates and Evaporites, 25 (2): 145-160.
Allahkarampour Dill, M., Seyrafian, A., & Vaziri-Moghaddam, H., 2012. Palaeoecology of the Oligocene-Miocene Asmari Formation in the Dill anticline. Neues Jahrbuch für Geologie und Paläontologie, 263 (2): 167-184.
Allahkarampour Dill, Vaziri-Moghaddama, H., Seyrafiana, H., Behdad (Ghabeishavi), A., 2018. Oligo-Miocene carbonate platform evolution in the northern margin of the Asmari intra-shelf basin, SW Iran. Marine and Petroleum Geology, 92: 437-461.
Alsharhan, A.S., & Kendall, C.G.St.C., 2003. Holocene coastal carbonates and evaporates of the southern Arabian Gulf and their ancient analogues. Earth Science Reviews, 61 (3-4): 191-243. 
Amirshahkarami, M., 2008. Distribution of Miogypsinoides in the Zagros Basin, Southwest of Iran. Historical Biology, 20 (3): 175-184.
Amirshahkarami, M., Ghabishavi, A., Rahmani, A., 2010, Biostratigraphy and paleoenvironment of the larger benthic foraminifera in wells sections of the Asmari Formation from the Rag-e-Safid Oil field, Zagros Basin, southwest Iran. Stratigraphy and Sedimentology Researches, 40 (3): 63-48.
Bachmann, M., & Hirsch, F., 2006. Lower Cretaceous carbonate platform of the eastern Levant (Galilee and Golan Heights): Stratigraphy and second-order sea-level change. Cretaceous Research, 27: 467-512.
Bassi, D., Hottinger, L., & Nebelsick, J., 2007. Larger foraminifera from the Upper Oligocene of the Venetian area, North-East Italy. Paleontology, 50: 845–868.
Bolli, H.M., Saunders, J.B., & Nielsen, K.P., 1987. Plankton Stratigraphy. Cambridge University Press, New York, p. 1023.
Boudagher-Fadel, M.K., 2008. Evolution and Geological Significance of Larger BenthicForaminifera. Developments in Paleontology and Stratigraphy, 21. Elsevier, Amsterdam, p. 544.
Brandano, M., Frezza, V., Tomassetti, L., & Cuffaro, M., 2009. Heterozoan carbonates in oligotrophic tropical waters: The Attard member of the lower coralline limestone formation (Upper Oligocene, Malta). Palaeogeography, Palaeoclimatology, Palaeoecology, 274: 54-63.
Brandano, M., Morsilli, M., Vannucci, G., Parente, M., Bosellini, F., & Mateu-Vicens, G., 2010. Rhodolith-rich lithofacies of the Porto Badisco Calcarenites (upper Chattian, Salento, southern Italy). Italian Journal of Geosciences, 129 (1): 119-131.
Busk, H.G., & Mayo, H.T., 1918. Some notes on the geology of the Persian Oilfields. Journal of the Institution of Petroleum Technologists, 5: 5-26.
Buxton, M.W.N., & Pedley, H.M., 1989. A standardized model for Tethyan Tertiary carbonates ramps. Journal of the Geological Society, London, 146: 746-748.
Cahuzac, B., & Poignant, A., 1997. Essai de biozonation de l’Oligo-Miocène dans les bassins européens à l’aide des grands foraminifères.néritiques. Bulletin de la Société géologique de France, 168: 155–169.
Corda, L., & Brandano, M., 2003. Aphotic zone carbonate production on a Miocene ramp, central Apennines, Italy. Sedimentary Geology, 161 (1-2): 55-70. 
Cosovic, V.K., & Moro, A., 2004, Paleoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian Peninsula). Facies, 50: 61-75.
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E., (ed.), Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, 1: 108-121.
Ehrenberg, S.N., Pickard, N.A.H., Laursen, G.V., Monibi, S., Mossadegh, Z.K., Svana, T.A., Aqrawi, A.A.M., McArthur, J.M., & Thirlwall, M.F., 2007. Strontium Isotope Stratigrapty of the Asmari Formation (Oligocene – Lower Miocene), SW Iran. Journal of Petroleum Geology, 30 (2): 107-128.
Embry, A.F., & Klovan, J.E., 1971. A Late Devonian reef tract on northeastern Banks Islands, Northwest Territories. Bulletin of Canadian Petroleum Geology, 19: 730-781.
Flügel, E., 2010. Microfacies of Carbonate Rocks, Analysis Interpretation and Application. Springer-Verlage, Berline, Heidelberg. 984 p.
Geel, T., 2000. Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Paleogene deposits in southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 155: 211-238.
Hallock, P., & Glenn, E.C., 1986. Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios, 1: 55-64.
Hallock, P., 1979. Trends in test shape with depth in large symbiont-bearing foraminifera. Journal of Foraminiferal Research, 9 (1): 61-69.
Hallock, P., Pomar, L., 2008. Cenozoic Evolution of Larger Benthic Foraminifers: Paleoceanographic Evidence for Changing Habitats. Proceedings of the 11thInternational Coral Reef Symposium. pp. 16-20.
Hohenegger, J., Yardanova, E., Nakano, Y., & Tatzreiter, F., 1999. Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Marine Micropaleontology, 36 (2): 109–168.
Hottinger, L., 1980, Répartition comparée des grands foraminifères de la mer Rouge et de l’Océan Indien. Annali dell’Università di Ferrara, IX (VI): 1-13.
Hottinger, L., 1983. Processes determining the distribution of larger foraminifera in space and time. Utrecht Micropaleontological Bulletin, 30: 239-253.
Hottinger, L., 1997. Shallow benthic foraminiferal assembelages as signals for depth of their deposition and their limitation. Bulletin de la Societé Géologique de France, 168 (4): 491-505.
James, G.A., & Wynd, J.G., 1965. Stratigrapahic nomenclature of Iranian oil Consortium Agreement area. American Assosiaation of Petroleum Geologists Bulletin, 49 (12): 2182-2245.
Laursen, G.V, Monibi, S., Allan, T.L., Pickard, N.A.H., Hosseiney, A., Vincent, B., Hamon, Y., Van Buchem, F.S.H., Moallemi, A., & Driullion, G., 2009. The Asmari Formation revisited: Changed stratigraphic allocation and new biozonation, First international petroleum conference & exhibition, Shiraz, Iran.
Lees, G.M., 1933. Reservoir rocks of Persian oil fields: American Association Petroleum Geology Bulletin, 17 (3): 229-240.
Loeblich, A.R.Jr., & Tappan, E., 1988. Forminiferal genera & their classification. Van Nostrand Reinhold Campany, New York, 1-970.
Mossadegh, Z.K., Haig, D.R., Allan, T., Adabi, M.H., & Sadeghi, A., 2009. Salinity changes during Late Oligocene to Early Miocene Asmari Formation deposition, Zagros Mountains, Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 272: 17-36.
Mutti, M., & Hallock, P., 2003. Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. International journal of earth sciences, 92 (4): 465-475.
Pomar, L., 2001a. Types of carbonate platforms: a genetic approach. Basin Research, 13: 313–334.
Pomar, L., 2001b. Ecological control of sedimentary accommodation: evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islalands. Palaeogeography, Palaeoclimatology, Palaeoecology, 175: 249-272.
Pomar, L., Mateu-Vicens, G., Morsilli, M., & Brandano, M., 2014. Carbonate ramp evolution during the Late Oligocene (Chattian), Salento Peninsula, southern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 404: 109-132.
Rahmani, A., Taheri, A., Vaziri-Moghaddam, H., & Ghabeishavi, A., 2012. Biostratigraphy of the Asmari Formation at Khaviz and Bangestan Anticlines, Zagros Basin, Sw Iran. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 263 (1): 1–16.
Rahmani, A., Vaziri-Moghaddam, H., Taheri, A., & Ghabeishavi, A., 2009. A Model for the Paleoenvironmental Distribution of Larger Foraminifera of Oligocene-Miocene Carbonate Rocks at Khaviz Anticline, Zagros Basin, Sw Iran. Historical Biology: An International Journal of Paleobiology, 21 (3): 215–227.
Renema, W., & Troelstra, S.R., 2001. Larger foraminifera distribution on a mesotrophic carbonate shelf in SW Sulawesi (Indonesia). Palaeogeography, Palaeoclimatology, Palaeoecology, 175: 125-147.
Richardson, R.K., 1924. The geology and oil measures of southwest Persia. Journal Institute Petroleum Techology, 10 (43): 256-283.
Romero, J., Caus, E., & Rossel, J., 2002. A model for the Palaeoenviornmental distribution of larger foraminifera based on Late Middle Eocene deposits on the margine of the south Pyrenean Basin (NE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 179: 43-56.
Sadeghi, R., Vaziri-Moghaddam, H., & Mohammadi, E., 2018. Biofacies, depositional model, and sequence stratigraphy of the Asmari Formation, Interior Fars sub-zone, Zagros Basin, SW Iran. Carbonates and Evaporites, 33 (3): 489–507.
Sadeghi, R., Vaziri-Moghaddam, H., & Taheri, A., 2010. Microfacies and sedimentary environment of the Oligocene sequence (Asmari Formation) in Fars sub-basin, Zagros Mountains, southwest Iran. Facies, 57 (3): 431-446.
Seyrafian, A., & Mojikhalifeh, A., 2005. Biostratigraphy of the Late Paleogene-Early Neogene Succession, North-Central Border of Persian Gulf, Iran. Carbonates and Evaporites, 20 (1): 91–97.
Seyrafian, A., Vaziri- Moghaddam, H., Torabi, H., 1996. Biostratigraphy of the Asmari Formation, Burujen area, Iran. Journal of Science, Islamic Republic of Iran, 7 (1): 31-47.
Shabafrooz, R., Mahboubi, A., Vaziri-Moghaddam, H., Ghabeishavi, A., Moussavi-Harami, R., 2015a. Depositional architecture and sequence stratigraphy of the oligo–miocene Asmari platform. Southeastern Izeh zone, Zagros Basin, Iran. Facies, 61(1): 1-32
Shabafrooz, R., Mahboubi, A., Vaziri-Moghaddam, H., Moussavi-Harami, R., Ghabeishavi, A., & Al-Aasm, I.S., 2015b. Facies analysis and carbonate ramp evolution of oligomiocene Asmari formation in the Gachsaran and Bibi-Hakimeh oilfields and the nearby mish anticline, Zagros Basin, Iran. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 276 (1): 121–146.
Shinn, E., 1983. Tidal flats. In: Scholle, P.A., Bebout, D.G., & Moore, C.H., (eds.), Carbonate Depositional Environments. American Association of Petroleum Geologists Memoir, 33: 171–210.
Taheri, M.R., Vaziri-Moghaddam, H., Taheri, A., & Ghabeishavi, A., 2017. Biostratigraphy and paleoecology of the oligo-miocene Asmari formation in the Izeh zone (Zagros Basin, SW Iran). Boletin de la Sociedad Geologica Mexicana, 69 (1): 59-85
Tesovic, B., Gusic, I., Jelaska, V., Buckovic, D., 2001. Stratigraphy and microfacies of the Upper Cretaceous Pucisca ormation, Island of Brac, Croatia. Cretaceous Research, 22: 591–613.
Thomas, A.N., 1948. The Asmari limestone of southwest Iran. Anglo-Iranian Oil Company Report, 706 p., Unpublished.
Tomasovych, A., 2004. Microfacies and depositional environment of an Upper Triassic intra-platform carbonate basin: the Fatric Unit of West Carpathians (Slovakia). Facies, 50: 77–105.
Van Buchem, F.S.P., Allan, T.L., Laursen, G.V., Lotfpour, M., Moallemi, A., Monibi, S., Motiei, H., Pickard, N.A.H., Tahmasbi, A.R., Vedrenne, V., & Vincent, B., 2010. Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations), SW Iran. Geological Society, London, Special Publications, 329 (1): 219-263.
Vaziri-Moghaddam, H., Kimigari, M., & Taheri, A., 2006. Depositional environment and sequence stratigraphy of the Oligo-Miocene Asmari Formation in SW Iran. Facies, 52 (1): 41-51.
Vaziri-Moghaddam, H., Seyrafian, A., Taheri, A., & Motiei, H., 2010. Oligocene-Miocene ramp system (Asmari Formation) in the NW of the Zagros basin, Iran: microfacies, paleoenvironment and depositional sequence. Revista Mexicana de Ciencias Geologicas, 27 (1): 56-71.
Wilson, J.L., 1975. Carbonate facies in geologic history. 1st edition, Springer-Verlag, New York, 1-471.
Wynd, J.G., 1965. Biofacies of the Iranian Oil Consortium Agreement area. Iranian Oil Operating Companies, Geological and Exploration Division, Report 1082. (Unpublished).
Zabihi Zoeram, F., Vahidinia, M., Mahboubi, A., & Amiri Bakhtiar, H., 2013. Facies analysis and sequence stratigraphy of the Asmari Formation in the northern area of Dezful Embayment, south-west Iran. Studia UBB Geologia, 58 (1): 45–56.
Zabihi Zoeram, F., Vahidinia, M., Sadeghi, A., Mahboubi, A., & Amiri Bakhtiar, H., 2015. Larger benthic foraminifera: a tool for biostrtigraphy, facies analysis and paleoenvironmental interpretations of the OligoMiocene carbonates, NW Central Zagros Basin, Iran. Arabian Journal of Geosciences, 8 (2): 931-949.
Zamagni, J., Košir, A., & Mutti, M., 2009. The firstmicrobialite-coralmounds in the Cenozoic (Uppermost Paleocene) from the Northern Tethys (Slovenia): environmentally-triggered phase shifts preceding the PETM? Palaeogeography, Palaeoclimatology, Palaeoecology, 274: 1-17.
CAPTCHA Image