Sedimentary environment, diagenesis and geochemistry of Parvadeh Formation (Middle Jurassic) at Kamar-Mahdi section (southwest of Tabas)

Document Type : مقالات پژوهشی

Authors

University of Birjand

Abstract

Introduction
Parvadeh Formation is the first rock unit of second sedimentary cycle of Jurassic sedimentary deposits in Central Iran. At the type locality, Parvadeh Formation is overlain and underlain by sandstones of the Hojedk and the marls of Baghamshah formations (Seyed-Emami et al., 1991; Aghanabati, 1996; Valipoori Godarzi et al., 2014). Lithologically, this sequence sttarts with a siliciclastic at the base and continues with almost uniform gray limestones. This formation is completely different with the lower shale and sandstone deposits and also upper green gray marl that separates these two rock units. Based on biostratigraphic studies of this section, Middle to Late Bathonian age has been suggested for this sequence (Aghanabati, 1996). The studied section is located at Kamar-Mahdi area, 68 Km southwest of Tabas city, that contain sandstone and siltstone rock units and thin to medium bedded carbonate rocks that continues to sandstone-coal layers of Hojedk Formation (Valipoori Godarzi et al., 2014; Zarrin, 2014).

Materials and Methods
For performance of laboratory studies, totally 86 rock samples were collected from Parvadeh Formation in Kamar-Mahdi section (eleven siliciclastic and seventy-five carbonate samples). All of the carbonate samples were stained using Dickson method (1965) for recognition of calcite from dolomite. Then, the stained microscopic samples were studied and photographed in detail at the laboratories of the department of Geology/University of Birjand. For the purpose of geochemical analysis of major and minor elements, totally 14 suitable micritic samples with low amount of insoluble residues (El-Hefnawi et al., 2010) were selected for atomic absorption spectrometery (AAS) analysis. This method is applied for determination of the amounts of Ca and Mg major elements and Sr, Fe, Mn and Na minor elements in carbonate rock samples. The AAS analyses were carried out using Shimadzu 670 device in analytical chemistry laboratory at the Ferdowsi University of Mashhad.

Discussion
Based on the obtained results from microscopic studies of thin sections, two siliciclastic lithofacies and eight carbonate microfacies were identified as follows: calclithite sandstone (C1), sandy bioclastic packstone (L1), siltstone (L2), extraclastic/peloidal packstone (L3), bioclastic/peloidal wackestone/packstone (L4), bioclastic/oncoidal packstone (L5), coral/sponge framestone (B1), oolithic/bioclastic grainstone (B2), bioclastic floatstone (M1) and bioclastic/oolithic packstone (M2). These lithofacies and microfacies were classified within four beach, lagoon, barrier and open marine facies belts. Based on the position of facies belts and compared with similar models, the suggested depositional environment for Parvadeh Formation in Kamar-Mahdi section is a rimmed shelf type carbonate platform. According to the petrography studies of thin section, the most significant diagenetic processes affecting on the carbonate samples of Parvadeh Formation in Kamar-Mahdi section are: micritization, dissolution and formation of intraparticle and interparticle porosities and incomplete bladed cement during marine diagenetic stage, physical and chemical compaction, creation of moldic and fracture porosities by dissolution, neomorphism, forming of equal mosaic and granular and syntaxial overgrowth cements, dolomitization and incomplete stylolitization in shallow burial diagenetic environment and formation of non-ferroan drusy mosaic and granular cements in phreatic meteoric diagenetic environment.
The analysis of major elements of carbonate samples reveals that the samples are composed of limestone, dolomite and dolomitized limestone. Also, based on the amounts of minor elements, primary mineralogical composition of the studied carbonate samples is aragonite. The Sr-Na crossplot diagram for the studied carbonate samples show a primary mineralogical composition similar to aragonite samples of Mozduran Formation. In addition, comparison of the obtained results with the previously published works (e.g. Brand & Veizer, 1981) indicates an open system geochemically for the studied carbonate samples. Furthermore, based on the amounts of minor elements, it has been concluded that the studied samples have been affected mostly within burial and meteoric diagenetic environments. Finally, based on Na/Sr ratio versus Mn values crossplot, paleoenvironmental conditions for this sequence have had similar to recent tropical environments.

Results
Based on the microscopic studies of thin sections and microfacies analysis, four different facies belts including coastal, lagoon, barrier and open marine belts have been identified and a rimmed shelf type carbonate platform depositional environment has been suggested for this sequence. Based on the study of thin sections and also results of geochemical analysis, diagenetic processes on the carbonate samples are mostly operated within burial and meteoric diagenetic environments. Geochemical analysis of the major elements revealed that the studied carbonate samples are composed of limestone, dolomite and dolomitized limestone. The results of geochemical analyses indicate an open geochemical system, aragonitic primary mineralogy and tropical paleoenvironmental conditions for the studied sequence

Keywords: Parvadeh Formation; Kamar-Mahdi; Middle Jurassic; Sedimentary environment; Diagenesis; Geochemistry.

References
Aghanabati, A., 1996. Introduction of Parvadeh Formation. Journal of Earth Sciences, 19: 2-6. [in Persian]
Brand, U. & Veizer, J., 1981. Chemical diagenesis of a multi-component carbonate system. II: Stable Isotopes. Journal of Sedimentary Petrology, 51: 987-997.
Dickson, J.A.D., 1965. A modified staining technique for carbonate in thin section. Nature, 205: p. 587.
El-Hefnawi, M.A., Hashaly, A.O., Shalaby, B.N., & Rashwan, M.A., 2010. Petrography and geochemistry of Eocene limestone from Khashm Al-raqaba area, El-Calala El-Qibliya, Egypt. Carbonates and Evaporites. 25: 193-202.
Seyed-Emami, K., Schairer, G., Aghanabati, A. & Fazl, M., 1991. Ammoniten aus dem Bathon von Zentraliran (Tabas-Naiband Region). Munchner Geowiss. Abh. 19: 65-100.
Valipoori Godarzi, B., Khazaei, A., Zaman, S. & Mirab Shabestari, G., 2014. Lithostratigraphy of Parvadeh Formation in shear Mazino and Kamar-Mahdi (southwest of Tabas). The 32nd Conference and 1st International Congress of Earth Sciences-Fundamental Geology. Northeast Department of Geological Survey and Mineral Exploration of Iran, Mashad, 561-567. [in Persian].
Zarrin, M., 2014. The study of petrography, geochemistry and environment Parvadeh Formation (Middle Jurassic) in Kamar-Mahdi (southwest of Tabas). Unpublished M.Sc. Thesis, University of Birjand, 122 p. [in Persian].

Keywords


آدابی، م.، 1383. ژئوشیمی رسوبی. انتشارات آرین زمین، 448 ص.
آقانباتی، س. ع.، سعیدی، ع.، 1360. معرفی حرکات تکتونیکی باتونین (ژوراسیک میانی) در ایران مرکزی. سازمان زمین‌شناسی و اکتشافات معدنی کشور، گزارش داخلی.
آقانباتی،س. ع.، 1375. معرفی سازند پروده. فصلنامه علوم زمین، 19: 2-6.
آقانباتی،س. ع.، 1389. زمین شناسی ایران. سازمان زمین شناسی و اکتشافات معدنی کشور، 586 ص.
اژدری، ع.، نظری، ح.، آقانباتی، س.ع. 1369. نقشه زمین شناسی چهارگوش 1:100000 رباط‌خان. سازمان زمین شناسی و اکتشافات معدنی کشور.
بختیاری، س.، 1384. اطلس راههای ایران با مقیاس 1:1000000. مؤسسه جغرافیایی و کارتوگرافی گیتاشناسی، 288 ص.
جمالی، ا. م.، صادقی، ع.، آدابی، م. ح.، 1390. رخساره ها و محیط های رسوبی سازند شوریجه در برش چینه شناسی حمام قلعه، جنوب کلات نادری. فصلنامه زمین شناسی ایران، 5 (17): 87- 102.
حسن‌پورمقدم، ج.، 1392. پتروگرافی، محیط رسوبی و ژئوشیمی بخش زیرین سازند اسفندیار (ژوراسیک پسین) در محل برش الگو (جنوب شرق طبس). پایان نامه کارشناسی ارشد، دانشگاه بیرجند، 163 ص.
خسروتهرانی، خ.، 1386. چینه شناسی و رخدادهای زمین شناسی. انتشارات دانشگاه تهران، 462ص.
فلاحی بکتاش، ر.، آدابی، م.، موحد، ب.، کدخدائی ایلچی، ع.، 1392. میکروفاسیس، محیط رسوبی و دیاژنز سازند دالان در چاه شماره X در میدان گازی پارس جنوبی. پژوهش های چینه نگاری و رسوب شناسی، 29 (2): 21-50.
راهبر، ح.، بابازاده، س.ا.، امیری بختیار، ح.، قاسمی، م.، امرایی، ف.، سلطانی نجف آبادی، م.، 1392. مطالعه سنگ شناسی، میکروفاسیس و تفسیر محیط رسوبی نهشته های پالئوسن ـ ائوسن ناحیه ماهرود بین بلوک لوت و بلوک افغان. سی و دومین گردهمایی و نخستین کنگره بین المللی تخصصی علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور، مشهد، 7ص.
رحیم پوربناب، ح.، 1384. سنگ شناسی کربناته، ارتباط دیاژنز و تکامل تخلخل. انتشارات دانشگاه تهران، 465 ص.
رستگاری لاری، ع.ر.، 1388. محیط رسوبی و چینه نگاری سکانسی سازند فهلیان در مرکز فارس. فصلنامه زمین شناسی کاربردی، 2: 111-120.
زرین، م.، 1393. مطالعه پتروگرافی، ژئوشیمی و محیط رسوبی سازند پروده (ژوراسیک میانی) در برش کمرمهدی (جنوب غرب طبس). پایان نامه کارشناسی ارشد، دانشگاه بیرجند، 122 ص.
عقیقی، ر.، موسوی حرمی، س. ر.، محبوبی، ا.، خانه باد، م.، 1392. محیط رسوبی رسوبات مخلوط آواری ـ کربناته سازند آتامیر (ناحیه بزنگان ـ شرق حوضه کپه داغ). سی و دومین گردهمایی و نخستین کنگره بین المللی تخصصی علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور، مشهد، 7ص.
علی خاصی، ع. م.، حسینی برزی، م.، شادان، م.، 1390. محیط رسوبی و برخاستگاه ماسه سنگ های سازند آب حاجی در برش های چشمه بخشی و سرتخت شتران، بلوک کلمرد، ایران مرکزی. فصلنامه علوم زمین، 21 (82): 231-234.
کاوسی، م. ع.، زوجی، ن.، مومنی، الف.، 1384. رخساره ها و محیط های رسوبی نهشته های کرتاسه بالایی شمال خاوری کلاردشت. نهمین همایش زمین شناسی ایران، دانشگاه تربیت معلم تهران، صص 591-597.
لاسمی، ی.، 1379. رخساره ها، محیط رسوبی و چینه نگاری سکانسی نهشته سنگ های پرکامبرین بالایی و پالئوزوئیک ایران. سازمان زمین شناسی و اکتشافات معدنی کشور، 180ص.
محمدی، ا.، وزیری، م. ر.، داستانپور، م.، 1393. بررسی ریزرخساره ها و بازسازی محیط رسوب‌گذاری سازند قم در ناحیه سیرجان، جنوب غرب کرمان. پژوهش های چینه نگاری و رسوب شناسی، 30 (2): 35-54.
محمدی، م.، کهنسال قدیم وند، ن.، وزیری، س.ح.، موسویان، م.، 1390. رخساره ها محیط های رسوبی سازند قم در برش بندامیر در شمال غرب ساوه. نشریه زمین، 6 (22): 55-65.
محمدی‌غیاث‌آبادی، ا.، 1391. مطالعه پتروگرافی و محیط‌ رسوبی سازند بادامو (ژوراسیک زیرین ـ میانی) در کوه های شتری، شرق ایران. پایان نامه کارشناسی ارشد، دانشگاه بیرجند، 220 ص.
ملکی خیمه سری، س.، 1387. محیط رسوبی و چینه نگاری سکانسی سازند فهلیان. فصلنامه زمین شناسی کاربردی، 4: 287-298.
موسویان، س. م.، صادقی، ع.، آدابی، م. ح.، 1393. چینه نگاری سنگی، زیستی و رخساره های رسوبی سازند شاه کوه در برش کوه تنگل بالا، جنوب غرب خور (ایران مرکزی). پژوهش های چینه نگاری و رسوب شناسی، 2 (1): 79-95.
ولی پوری گودرزی، ب.، خزاعی، ا.، زمان، ش.، میراب شبستری، غ.، 1392. لیتواستراتیگرافی و چینه نگاری سازند پروده در برش های مزینو و کمرمهدی (جنوب غرب شهرستان طبس). سی و دومین گردهمایی و نخستین کنگره بین المللی تخصصی علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور، مشهد، صص 561 -567.
ولی پوری گودرزی، ب.، 1393. مطالعه سیستماتیک و دیرینه بوم شناسی مرجان های ژوراسیک میانی سازند پروده در برش های کمرمهدی و مزینو، جنوب غرب طبس. پایان نامه کارشناسی ارشد، دانشگاه بیرجند، 178 ص.
Adabi, M.H., & Rao, C.P., 1991. Petrographic and geochemical evidence for original aragonitic mineralogy of upper Jurassic carbonates (Mozduran Formation), Sarakhs area, Iran. Sedimentary Geology, 72: 253-267.
Adabi, M.H., & Asadi Mehmandosti, E., 2008. Microfacies and geochemistry of the Ilam Formation in the Tang-E Rashid area, Izeh, S.W. Iran. Journal of Asian Earth Sciences, 33: 267-277.
Adabi, M.H., Salehi, M.A., & Ghabeishavi A., 2010. Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Formation), south-west Iran. Journal of Asian Earth Sciences, 39: 148-160.
Aghanabati, A., 1977. Etude geologique do la region de Kalmard area (W. Tabas). Ph.D. Thesis, University of Gronoble, France, A.0.11: 623 p.
Ahmad, A.H.M., & Bhat, G.M., 2006. Petrofacies, provenance and diagenesis of the Dhosa sandstone member (Chari Formation) at Ler, Kachch sub-basin, western India. Journal of Asian Earth Sciences, 27: 857-872.
Bassi, D., & Nebelsick, J.H., 2010. Components, facies and ramps: Redefining Upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 295: 258-280.
Bathurst, R.G.C., 1975. Carbonate sediments and their diagenesis. Elsevier, Amsterdam, 658 p.
Brand, U., & Veizer, J., 1981. Chemical diagenesis of a multicomponent carbonate system. II: Stable Isotopes. Journal of Sedimentary Petrology, 51: 987-997.
Budd, D.A., 1992. Dissolution of high-Mg calcite fossils and the formation of biomolds during mineralogical stabilization. Carbonates and Evaporites, 7: 74-81.
Boudagher Fadel, M.K., 2008. Evolution and geological significance of larger benthic foraminifera. Elsevier, 540 p.
Cantrell, D.L., 2006. Cortical fabrics of Upper Jurassic ooids, Arab Formation, Saudi Arabia, Implications for original carbonate mineralogy. Sedimentary Geology, 186: 157-170.
Choquette, P.W., & James, N.P., 1987. Diagenesis in Limestone 3, the deep burial environment. Geoscience Canada, 14: 3-35.
Clair, P.N.S.T., 1981. Core studies of the Viala limestone in Barber and Pratt counties, south- central Kansas. Kansas Geological Survey, Subsurface Geology, 6: 8-16.
Diaz, E., Prasad, M., Gutierrez, M.A., Dvorkin, J., & Mavko, G., 2002. Effect of Glauconite on the Elastic Properties, Porosity, and Permeability of Reservoirs Rocks. American Association of Petroleum Geology Bulletin, Annual Meeting, March 10-13. 1-7 p.
Dickson, J.A.D., 1965. A modified staining technique for carbonate in thin section. Nature. 205: 587.
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (eds), Classification of carbonate rocks, American Association of Petroleum Geology Memoir, 1: 108-121.
Ehrenberg, S.N., 2006. Porosity destruction in carbonate platforms. Journal of Petroleum Geology, 29: 41–52.
El Hefnawi, M.A., Hashaly, A.O., Shalaby, B.N., & Rashwan, M.A., 2010. Petrolography and geochemistary of Eocene limestone from Khashm Al-raqaba area, El-Calala El-Qibliya, Egypt. Carbonates and Evaporites, 25: 193-202.
Embry, A.F., & Klovan, J.E., 1971. A Late Devonian reef tract on northeastern Banks Island, N.W.T. Bulletin of Canadian Petroleum Geology, 19: 730-781.
Flugel, E., 2010. Microfacies analysis of carbonate rocks. Springer-Verlag, Berlin, 976 p.
Folk, R., 1980. Petrology of Sedimentary Rocks. Hemphill publicatio Company, Austin, Texas, 182 p.
Gaumet, F., Van Buchem, F., Baghbani, D., Keyvani, F., Ashrafzadeh, R., Bahrami, H., & Assilian, H., 2005. Sequence stratigraphy of the Jurassic and Lower Cretaceous in the Dezful Embayment (Southwest Iran). NIOC-IFP Joint Research Project, Geological Report, 2139: 79 p.
Geel, T., 2000. Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Paleogene deposits in southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 155: 211-238.
Given, R.K., & Wilkinson B.H., 1987. Dolomite abundance and stratigraphic age: constraints on rates and mechanism of phanerozoic dolostone formation. Journal of Sedimentary Petrology, 57: 1068-1078.
Hallock, P., & Glenn, E.C., 1986. Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic depositional facies. Palaios, 1: 55-64.
Hallock, P., Lidz, B.H., Cockey Burkhard., E.M., & Donnelly, K.B., 2003. Foraminifera as bioindicators in coral reef assessment and monitoring: the FORAM Index. Foraminifera in Reef Assessment and Monitoring. Environmental Monitoring and Assessment, 81: 221-38.
Irwin, M.L., 1965. General theory of epiric clear water sedimentation. American Association of Petroleum Geologists Bulletin, 49: 445-459.
Kabanov, P.B., 2000. Grain micritization as facial indicator in shallow water marine carbonate rocks: Byulleten Moskovskogo Obshchestva Ispytateley Prirody. Otdel Geologicheskiy, 75: 39-48.
Lambert, L., Durlet, C., Loreau, J.P. & Marnier, G., 2006. Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic Cretaceous): Keys for recognition and timing. Marine and Petroleum Geology, 23: 79-92.
Land, L.S., & Hoops, G.K., 1973. Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic soulutions. Journal of Sedimentary Petrology, 43: 614-617.
Li, C., Jones, B., & Blanchon, P., 1997. Lagoon-shelf sediment exchange by storms - Evidence from foraminiferal assemblages, east coast of Grand Caiman, British West Indies. Journal of Sedimentary Research, 67: 17-25.
Longman, M.W., 1980. Carbonate diagenetic texture from nearshore diagenetic environment. American Association of Petroleum Geologists Bulletin, 64: 461-487.
Longman, W.M., 1982. Carbonate diagenesis as a control on stratigraphic traps (with examples from the Williston Basin). American Association of Petroleum Geologists Education Course Note Series, 159 p.
Lucia, F.J., 1999. Carbonate reservoir characteristics. Springer Verlag, Heiderberg, 226 p.
McBride, E.F., Land, L.S., & Mack, L.E., 1987. Diagenesis, Norphler Formation (Upper Jurassic), Rankin County, Mississippi and Mobile County, Alabama. The American Association of Petroleum Geologists Bulletin, 71: 1019-1034.
Miall, A.D., 1996. The Geology of Fluvial Deposits, Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag, Berlin, 390 p.
Miall, A.D., 2002. Architecture and sequence stratigraphy of Pleistocene fluvial systems in the Malay Basin, based on seismic time-slice analysis. American Association of Petroleum Geologists Bulletin, 86: 1201-1216.
Milliman, J.D., 1974. Marine carbonates recent sedimentary carbonates, Part 1, Speringer Verlay, Berlin, 375.
Mohammadi Ghiasabadi, Kh., Mirab Shabestari, G., & Khazaei, A., 2014. Microfacies, sedimentary environment and geochemistry of the Badamu Formation (Lower-Middle Jurassic) in Lut Block, East of Iran. Journal of Tethys, 1: 29-44.
Morad, S., & Aldaham, A., 1986. Diagenetic alteration of detrital biotite in Protrozoic sedimentary rocks from Sweden. Sedimentary Geology, 47: 95-107.
Morse, J.W., & Mackenzie, F.T., 1990. Geochemistry of sedimentary carbonates. New York, Elserier. 707p.
Pingitore, N.R.Jr., 1978. The behavior of Zn and Mn during carbonate diagenesis: Theory and applications. Journal of Sedimentary Petrology, 48: 799-814.
Pingitore, C.P., 1990. The behavior of Zn2+ and Mn2+ during carbonate diagenesis. Sedimentary Petrology, 48: 799-814.
Pomar, L., 2001b. Types of carbonate platforms: a genetic approach. Basin Research, 13: 313–33.
Rao, C.P., 1991. Geochemical differences between subtropical (Ordovician) temperate. Carbonates and Evaporites, 6: 83-106.
Rao, C.P., & Adabi, M.H., 1992. Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia. Marine Geology, 103: 249-272.
Ros, L.F., Morad, S., & Al-Aasm, I.S., 1997. Diagenesis of siliciclastic and volcaniclastic sediments in the Cretaceous and Miocene sequences of the NW African margin (DSDP Leg 47A, Site 397). Sedimentary Geology, 112 (1-2): 137-156.
Reolid, M., Giallard C., & Lathuiliere B., 2007. Microfacies, microtaphonomic traits and foraminiferal assemblages from Upper Jurassic oolitic-coral limestones, stratigraphic fluctuations in a shallowing-upward sequence (French Jura, Middle Oxfordian), Facies, 53: 553-574.
Salehi, A., Adabi, M.H., Ghalavand, H., & Ghobishavi, A., 2007. Reconstruction of the sedimentary environment and the petrographic and geochemical evidence for the original aragonite mineralogy of Lower Cretaceous carbonates (Fahliyan Formation) in the Zagros sedimentary basin, Iran. 13th Bathurst Meeting of Carbonate Sedimentologists, UK.
Sandberg, P.A., 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305: 19-22.
Seyed Emami, K., Schairer, G., Aghanabati, A., & Fazl, M., 1991. Ammoniten aus dem Bathon von Zentraliran (Tabas-Naiband Region). Münchner Geowissenschaftliche Abhandlungen, 19: 65-100.
Sibley, D.F., & Gregg, J.M., 1987. Classification of dolomite rock texture. Journal of Sedimentary Petrology, 57: 967-975.
Skelton, P.W., & Gili, E., 2012. Rudists and carbonate platforms in the Aptian, a case study on biotic interactions with ocean chemistry and climate. Sedimentology, 59: 81- 117.
Steuber, T., 2000. Skeletal growth rates of Upper Cretaceous rudistid bivalves, implications for carbonate production and organism- environment feedback. In: Insalaco, E., Skelton, P.W., Palmer, T.J., (eds.), Carbonate platform systems: components and interactions. Geological Society, London, Special Publication, 178: 21-32.
Tucker, M.E., & Wright, V.P., 1990. Carbonate Sedimentology. Blackwell, 482 p.
Tucker, M.E., 1993. Carbonate Diagenesis and Sequence Stratigraphy. In: Wright, V.P., (ed.), Sedimentology Review. Blackwell, Oxford, 51-72 p.
Tucker, M.E., 2001. Sedimentary Petrology. 3rd edition. Blackwell, Oxford, 260 p.
Valipouri Goodarzi, B., Zaman, Sh., Khazaei, A., & Mirab Shabestari, G., 2014. Morphology and morphometry of Chomatoseris iranensis Flugel (1966) (Scleractirian coral) of Parvadeh Formation in Kamar-Mahdi section (SW Tabas, Iran). Symposium of Iranian Paleontological Society, University of Zanjan, Zanjan, Iran, pp. 130-134.
Vecchio, E., & Hottinger, L., 2007. Agglutinated conical foraminifera from the Lower-Middle Eocene of the Trentinara Formation (southern Italy). Facies, 53: 509-533.
Veizer, J., & Demovic, R., 1973. Environmental and climatic controlled fractionation of elements in the Mesozoic carbonate sequence of the western Carpathians. Journal of Sedimentary Petrology, 43 (1): 258-271.
Veizer, J., 1983. Trace elements and isotopes in sedimentary carbonates, Reviews in Mineralogy and Geochemistry, 11: 265-299.
Wei, L.M., 1995. Study on the micritization of carbonate grains by bacteria and algae. Acta Sedimentologica Sinica, 13(3): 89-97 (In Chinese).
Wilson, J.L., 1975. Carbonate Facies in Geologic History. Springer-Verlag, New York, 471 p.
CAPTCHA Image