Geochemical comparison of sandstone and shale in the study of Paleoclimate Indexes: An example from Shurijeh Formation in NE Iran

Document Type : مقالات پژوهشی

Authors

1 M.Sc. student in Sedimentology, Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 Associate Professor, Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

3 Professor, Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Introduction
The relationship between the composition of siliciclastic sediments, tectonic setting, and the source rocks has been studied by many researchers. The siliciclastic deposits are always affected by the composition of source rock, chemical weathering, transport distance, and diagenetic changes after deposition. It is possible to determine the paleoclimatic conditions of siliciclastic rocks, particularly sandstones, using different methods such as petrography and geochemistry. Interpretation of paleoclimatic conditions has a significant impact on the reconstruction of paleogeography (Garzanti & Resentini, 2016). Due to their fine-grain and low permeability, shale can preserve the composition of source rock minerals and, therefore, are very important in interpreting the source rocks (Khanehbad et al., 2012). In this study, the distribution of the major elements in the sandstones and shales of the Shurijeh Formation is compared with the standard values, and the paleoclimatic conditions have been interpreted.
Material and Methods
One of the best techniques to major elements values in the siliciclastic sediments is the analysis of rock by the XRF method. Petrographic studies on seven samples of sandstones were done using a polarizing microscope and classified based on Folk's (1980) classification scheme. Also, six shale samples with the lowest calcium carbonate content are selected. Fresh shale and sandstone samples were chosen for geochemical analysis and then were powdered to the size of fewer than 63 microns using Agate mortar. The presence of calcium carbonate on cement can cause an error in Ca contents, so the samples were washed with 10% hydrochloric acid to remove the CaCO3. The residual powders (IR) were analyzed using Philips Panalytical Model X-ray Fluorescence (XRF) to determine the major oxides and trace elements of siliciclastic particles in the Taban Gostar laboratory in Tehran.
Discussion and Conclusion
The Suttner & Dutta (1986) binary diagram determines the paleoclimatic conditions and paleoweathering at the source area. In this diagram, the plotted values of the Shurijeh Formation sandstone samples show the semi-humid climatic condition. In contrast, the plotted values of shale samples in this diagram show different results. They indicate the semi-arid climatic conditions, which are entirely different from the results of the sandstone samples. Various statements can be presented for this difference. First, shale samples usually have higher K2O and Al2O3 than SiO2 due to the presence of higher amounts of clay minerals. However, in the sandstones (due to the presence of quartz and chert minerals), silica is higher than the shale samples (Gateneh, 2000). Therefore, these differences in the values of SiO2, Al2O3, and K2O cause the differences in the shale and sandstone samples in the binary diagram (Suttner and Dutta, 1986). By comparing this chart with the "A-CN-K" ternary chart, better results can be obtained. This indicates that it is better to select the sandstone samples which are least affected by diagenetic processes based on detailed petrography studied.
Calculation of the CIA index values in the studied sandstone and shale samples shows high weathering conditions in the source rock area within the semi-humid climatic conditions. The use of binary diagrams for sandstone samples confirms this subject, and the results are the same as the triangular diagram "A-CN-K" for the sandstones. However, in the case of shale samples containing clay minerals, the binary diagram shows completely different results, indicating cold and dry climatic conditions. One of the main reasons for this difference is the increase of the SiO2/Al2O3 ratio in shale samples. Therefore, binary diagram is not recommended for the shale samples, including clay minerals. Instead, it is better to use only the triangular diagram "A-CN-K", which shows the wet conditions and semi-humid climate. Small changes in the amount of Al2O3 due to diagenesis, on the one hand, and large changes in the amounts of Na2O, CaO, K2O, and SiO2 in the diagenetic condition, on the other hand, can even exacerbate the error of using the triangular diagram A-CN-K. Because the values of these elements, based on the geochemical analysis data, are less than the original values; therefore, it causes analytical errors in the interpretation of the data. For this reason, it is recommended to select the least affected sandstone samples by diagenetic processes after a detailed petrographic study.
References
Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Press, Austin, Texas, 182p.
Garzanti, E., & Resentini, A., 2016. Provenance control on chemical indices of weathering (Taiwan river sands). Sedimentary Geology, 336: 81-95.
Gateneh, W., 2000. Geochemistry provenance and depositional tectonic setting of the Adigrat Sandstone northern Ethiopia. Journal of African Earth Sciences, 35: 185-198.
Khanehbad, M., Moussavi-Harami, R., Mahboubi, A., & Nadjafi, A., 2012. Geochemistry of Carboniferous Shales of the Sardar Formation, East Central Iran: Implication for Provenance, Paleoclimate and Paleo-oxygenation Conditions at a passive Continental Margin. Geochemistry International, 50: 777- 790.
Suttner, L.J., & Dutta, P.K., 1986. Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Petrology, 56: 329-345.

Keywords

Main Subjects


افشارحرب، ع.، 1373. زمین شناسی ایران: زمین شناسی کپه‌­داغ. سازمان زمین شناسی و اکتشافات معدنی کشور، 275 ص.
امجدی، ص.، موسوی حرمی، ر.، محمودی قرائی، م .ح.، محبوبی، ا.، علیزاده کتک لاهیجانی، ح.، 1390. کانی ‏شناسی رس‌‏های موجود در رسوبات فلات قاره دریای عمان ـ ناحیه چابهار و ارتباط آن با خاستگاه رسوبات. اقیانوس شناسی، 8: 1-10.
سهندی، س.، سهیلی، م.، 1393. نقشه زمین شناسی ایران، مقیاس 1:1000000. سازمان زمین شناسی و اکتشافات معدنی کشور.
مرتضوی، م.، 1392. بررسی رخساره‏‌های سنگی، تاریخچه رسوب‌گذاری و پس از رسوب‌گذاری و چینه نگاری سکانسی سازند شوریجه (کرتاسه تحتانی) در بخش مرکزی و غربی حوضه رسوبی کپه ‏داغ. رساله دکتری، دانشگاه فردوسی مشهد، 433ص.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B., & Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148: 692-725.
Asiedu, D. K., Suzui, S., & Shibata, T., 2000. Provenance of sandstones from the Lower Cretaceous Sasayama Group, inner zone of southwest Japan. Sedimentary Geology, 131: 9-24.
Basu, A., Young, S., Suttner, L., James, W., & Mack, G., 1975. Re-evaluation of the use of undulatory extinction and crystallinity in detrital quartz for provenance interpretation. Sedimentary Petrology, 45: 873-882.
Cavazza, W., & Ingersoll, R., 2005. Detrital modes of the Ionian forearc basin fill (Oligocene-Quaternary) reflects the tectonic evolution of the Calabria-Peloritani terrane (southern Italy). Sedimentary Research, 75: 268–279.
Dinis, P.A., Garzanti, E., Hahn, A., Vermeesch, P., & Cabral-Pinto, M., 2020. Weathering indices as climate proxies: A step forward based on Congo and SW African river muds. Earth-Science Reviews, 201: 103-139.
Ehrenberg, S.N., Aagaard, P., Wilson, M. J., Fraser, A.R., & Duthie, D. M.L., 1993. Depth-dependent transformation of Kaolinite to dickit in sandstones of the Norwegian continental shelf. Clay Minerals, 28: 325-352.
Ehrmann, W., Setti, M., & Marinoni, L., 2005. Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal the paleoclimatic history. Paleogeography, Paleoclimatology, Paleoecology, 229: 187-211.
Fedo, C.M., Nesbitt, H.W., & Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for weathering conditions and provenance. Geology, 23: 921-924.
Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Press, Austin, Texas, 182p.
Galan, E., & Ferrell, R.E., 2013.Genesis of Clay Minerals. Developements in Clay Science, 5: 83-126.
Garcia, D., Ravenne, C., Marechal, B., & Moutte, J., 2004. Geochemical variability induced by entrainment sorting: quantified signais for provenance analysis. Sedimentary Geology, 171: 128-131.
Garzanti, E., & Resentini, A., 2016. Provenance control on chemical indices of weathering (Taiwan river sands). Sedimentary Geology, 336: 81-95.
Gateneh, W., 2000. Geochemistry provenance and depositional tectonic setting of the Adigrat Sandstone northern Ethiopia. Journal of African Earth Sciences, 35: 185-198.
Hassouta, L., Buatier, M., Luc Potdevin, J., & Liewig, N., 1999. Clay Diagenesis in the Sandstone Reservoir of the Ellon Field (Alwyn, North Sea). Clay and Clay Minerals, 47: 269- 285.
Jin, Z., Li, F., Cao, J., Wang, S., & Yu, J., 2006. Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting and catchment weathering. Geomorphology, 80: 147-163.
Khanehbad, M., Moussavi-Harami, R., Mahboubi, A., & Nadjafi, A., 2012. Geochemistry of Carboniferous Shales of the Sardar Formation, East Central Iran: Implication for Provenance, Paleoclimate and Paleo-oxygenation Conditions at a passive Continental Margin. Geochemistry International, 50: 777- 790.
Khazaei, E., Mahmudy Gharaie, M.H., Mahboubi, A., Moussavi-Harami, R., & Taheri, J., 2018. Petrography, Major and Trace Elemental Geochemistry of the Ordovician-Silurian Siliciclastics in North of Tabas Block, Central Iran: Implications for Provenance and Paleogeography. Journal of Sciences, Islamic Republic of Iran, 29: 129-142.
Lanson, B., Beaufort, D., Berger, G., Baradat, J., & Lacharpagne, J.C., 1996. Illitization of diagenetic kaolinite to dickite conversion series: late-stage diagenesis of the lower Permian Rotliegend sandstone reservoir, Offshore of the Netherlands. Sedimentary Research, 66: 501-518.
McLennan, S.M., Hemming, S., McDaniel, D.K., & Hanson, G.N., 1993. Geochemical approaches tosedimentation, provenance, and tectonics. In: Johnson, M.J. & Basu, A., (eds.), Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Special Papers, 284: 21–40.
Mortazavi, M., Moussavi-Harami, R., & Mahboubi, A., 2013a. Detrital Mode and Geochemistry of the Shurijeh Formation (Late Jurassic-Early Cretaceous) in the Central and Western Parts ofthe Intracontinental Kopet-Dagh Basin, NE Iran: Implications for Provenance, Tectonic Setting and Weathering Processes. Acta Geologica Sinica, 89: 1058-1080.
Mortazavi, M., Moussavi-Harami, R., Brenner, R.L., & Mahboubi, A., 2013b. Stable isotope record in pedogenic carbonates in northeast Iran: Implications for Early Cretaceous (Berriasian-Barremian) paleovegetation and paleoatmospheric P (CO2) levels. Geoderma, 212: 85-97.
Moussavi-Harami, R., Mahboubi, A., Nadjafi, M., Brenner, R.L., & Mortazavi, M., 2009. Mechanism of calcrete formation in the Lower Cretaceous (Neocomian) fluvial deposits northeastern Iran based on petrographic, geochemical data. Cretaceous Research, 305: 1146-1156.
Nelson, S.A., 2006. Clay minerals. Earth Matrials, 211pp.
Nesbitt, H.W., & Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717.
Nesbitt, H.W., & Young, G.M., 1984. Predictions of some weatheringtrends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48: 1523-1534.
Paikaray, S., Banerjee, S., Mukherji, S., 2008. Geochemistry of shalesvfrom the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonic and paleoweathering. Journal of Asian Earth Sciences, 32: 34-48.
Pettijohn, F.J., Potter, P.E., & Siever, R., 1987.Sand and Sandstone. Springer-Verlag, New York, 533 p.
Pittman, E. D., 1970. Plagioclase as an indicator of provenance in sedimentary rocks. Journal of Sedimentary Petrology, 40: 591-598.
Popeko, L.I., Smirnova, Y.N., Zaika, V.A., Sorokin, A.A., & Dril, S.I., 2020. Provenance and Tectonic Implications of sedimentary rocks of the Paleozoic Chiron Basin, Eastern Transbaikalia, Russia, Based on whole- Rock Geochemistry and Detrital Zircon U- Pb Age and Hf Isotopic Data. Minerals, 279: 1-27.
Ramazani Oomali, R., Shahriari, S., Hafezi Moghadas, N., Omidi, P., & Eftrkharnejhad, J., 2008. A model for Active tectonics in Kopet Dagh (North- East Iran). World Applied Scieences Journal, 3: 312-316.
Rollinson, H.R., 1993. Using Geochemical DATA: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, New York.352pp.
Schnyder, J., Gorin, G., Soussi, M., Baudin, F., & Decininck, J.F., 2005. Enregistrement de la variation climatique au passage Jurassique/Cretace sur la marge sud de la Tethys: mineralogy des argies et palynofacies dr la coupe du Jebal Meloussi (Tunisie Central, Formation Sidi Karlif). Bulletin de la Societe Geologique de France, 176: 171-182.
Shadan, M., & Hosseini-Barzi, M., 2013. Petrography and geochemistry of the Ab-e-Haji Formation in central Iran: implications for provenance and tectonic setting in the southern part of the Tabasblock. Revista Mexicana de Ciencias Geologicas, 30:80–95.
Stampfli, G., & Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Palentary science Letters, 196: 17-33.
Suttner, L.J., & Dutta, P.K., 1986. Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Petrology, 56: 329-345.
Worden, R.H., & Barclay, S.A., 2003.The effect of oil emplacement on diagenetic clay mineralogy: the Upper Jurassic Magnus Sandstone Member, North Sea. In: Worden, R.H., & Morad, S., (ed.), Clay Mineral Cements in Sandstones. International Association of Sedimentoligists Special Publication 34: 453-469.
Worden, R.H., & Morad, S., 2003. Clay Minerals cements in sandstones. Blackwell Publishing, 508 p.
Zimmermann, U., & Bahlburg, H., 2003. Provenance analysis and tectonic setting of Ordovician clastic deposits in the southern Puna Basin, NW Argentina. Sedimentology, 50: 1079- 1104.
CAPTCHA Image