Depositional history and diagenetic evolution of evaporite deposits of the Sachun Formation in Siyah anticline section–south east of Sarvestan

Document Type : مقالات پژوهشی

Authors

1 Shahid Beheshti University

2 National Iranian South Oil Company, Ahwaz

Abstract

Introduction
The Paleocene- Early Eocene Sachun Formation in southeast Zagros basin of Iran (Fars sub-basin) is composed of marl, carbonates and evaporates facies (Amiri Bakhtiyar, 2007). The first Cenozoic evaporate succession of Zagros basin in Iran is present in the Sachun Formation. This formation is at type section is composed of marl, carbonate and evaporite (Motiie, 2003; Amiri Bakhtiar, 2007). According to Heydari (2008), during this period Arabian plate and Zagros basin were at the 300 N latitude, so temperature condition was suitable for the formation of evaporate and these deposits have formed along with shallow marine carbonates of Umm er Radhuma (Paleocene), Rus (Early Eocene) and Dihban (Paleocene-Eocene) Formations (Zigler, 2001; Alavi, 2004; Ghazban, 2007). The Sachun Formation has not been studied in detail and can only been refer to works of Arzaghi et al. (2012) and Shabafrooz et al (2013). The aim of this study is to investigate depositional history and diagenetic evolution of evaporite deposits of the Sachun Formation in Siyah anticline section located about 12 kilometers south east of Sarvestan city.

Materials and Methods
After identification of the lower and upper boundaries of this formation, 300 samples were colocted for petrographic studies with sampling interval of 1-2 meters. In order to identify evaporate minerals and intensity of evaporation, ten samples were selected to analyze by XRD (Sw 1800). Additional studies of diagenetic processes heve been performed by Su 3500 scanning electron microscope (SEM) on ten samples at central laboratory of Shahid Beheshti University. Ten Polished section were prepared in central laboratory of National Iranin South Oil Company (NISOC) to study carbonate-evaporite alternation. In this study, structure and structural classification of evaporate have been performed according to Maiklam et al. (1969) and Warren (2006) works.

Discussion and conclusion
Evaporates deposits of the Sachun Formation in Siyah anticline have formed as three types: primary, secondary and tertiary. Primary evaporates are beds and laminates that have formed in sabaqoues environment (salina) due to evaporation. Along with primary evaporates, carbonate also deposited in lagoonal and sabkha environments. Secondary evaporates formed during eogenetic and mesogenetic stages. Nodules sulphates (anhydrite & gypsum) have displaced in marl-carbonate matrix as enterolithic and chicken wire structures. Transformation of gypsum to anhydrite have taken placed in mesogenetic stage due to incrassation of pressure and temperature. Tertiary evaporates or telogenetic evaporites formed in meteoric environment. The most important diagenetic processes in this stage include hydration of anhydrite and formation of bassanite along with secondary gypsum with granoblastic, porphyroblastic and alabastrian textures. Gypsum viens in evaporate and carbonate sediments have been filled by satinspare and sigmoidal gypsum cements. Besides, gypsum cements have formed in carbonate facies. Another diagenetic processes are calcification, dissolution and dissolution breccia.

Keywords: Siyah Anticline; Sachun Formation; Gypsum; Anhydrite; Bssanite.
Reference
Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and proforland evolution. American Journal of Sciences, 304:1-20.
Amiri-Bakhtiar, H., 2007. Lithostratigraphy and biostratigraphy of the Tarbur Formation in Fars region. PhD Dissertation, Shahid Beheshti University,Tehran, 439 p.
Arzaghi, S., Khosrow-Tehrani, K., & Afghah, M., 2012. Sedimentology and petrography of Paleocene–Eocene evaporites: the Sachun Formation, Zagros Basin, Iran. Carbonates and Evaporites, 27:43–53.
Ghazban, F., 2007. Petroleum Geology of the Persian Gulf. Tehran University Press, Iran, 707 p.
Maiklem, W.R., Bebout, D.G., & Glaister, R.P., 1969. Classification of anhydrite-a practical approach. Bulletin of Canadian Petroleum Geology, 17:194-233.
Heydari, E., 2008. Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran. Tectonophysics, 451:56–70
Motiei, H., 2003. Stratigraphy of Zagros, Treatise on the Geology of Iran. Ministry of Mines and Metals, Geological Survey of Iran, Tehran, 539 p
Shabafrooz, R., Mahboubi, A., Moussavi-Harami, R., & Amiri Bakhtiar, H., 2013. Facies analysis and sequence stratigraphy of the evaporite bearing Sachun Formation at the type locality, South East Zagros Basin, Iran. Carbonates and Evaporites, 28: 457-574.
Warren, J.k., 2006. Evaporates: Sediments, Resources and Hydrocarbons. Springer-Verlag Berlin, 1035p.
Ziegler, M.A., 2001. Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. Geo Arabia, 6: 445-503.

Keywords


مطیعی، ه. 1382. زمین شناسی ایران: چینه شناسی زاگرس. سازمان زمین‌شناسی و اکتشافات معدنی کشور، 536 ص.
Adabi, M.H., 2009. Multistage dolomitization of Upper Jurassic Mozduran Formation, Kope-Dagh Basin, NE Iran. Carbonates and Evaporites, 24: 1-19.
Alavi, M., 1994. Tectonic of zagros orogenic belt of Iran, new data and interpretions. Tectonophysics, 229: 211-238.
Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and proforland evolution. American Journal of Sciences, 304:1-20.
Alavi, M., 2007. Structure of the Zagros fold-thrust belt in Iran. American Journal of Science, 307: 1064-1095.
Al-Juboury, A.I., & McCann, T., 2008. The Middle Miocene Fatha (Lower Fars) Formation Iraq. GeoArabia, 13:141-174.
Alsharhan, A.S., & Kendall, G.St.C., 2003. Holocene coastal carbonates and evaporates of the southern Arabian Gulf and their ancient analogues. Earth Science Reviews, 61:191-243
Aqrawi, A.A.M., & Sadooni, F.N., 1987. Recent tidal flat sediments of Khor AI-Zubair, NW Arabian Gulf. Iraq Journal of Water Resources, 6:18-37.
Arzaghi, S., Khosrow-Tehrani, K., & Afghah, M., 2012. Sedimentology and petrography of Paleocene-Eocene evaporites: the Sachun Formation, Zagros Basin, Iran. Carbonates and Evaporites, 27: 43–53.
Babel, M., 2005a. Event stratigraphy of the Badenian selenite evaporites (Middle Miocene) of the northern Carpathian Foredeep. Acta Geologica Polonica, 55: 9-29.
Babel, M., 2005b. Selenite-gypsum microbialite facies and sedimentary evolution of the Badenian evaporate basin of the northern Carpathian Foredeep. Acta Geologica Polonica, 55:187-210.
Barchi, M.R., De Feyter, A., Magnani, M., Minelli, G., Pialli, G., & Sotera, B., 1998. The structural cycle of the Umbria-Marche fold and thrust belt. Memorie della Societa Geologica Italiana, 52:557-578.
Beales, F.W., & Oldershaw, A.E., 1969. Evaporite solution brecciation and Devonian carbonate reservoir porosity in western Canada. American Association of Petroleum Geologists Bulletin, 53: 503-512.
Benison, K.C., & Goldstein, R.H, 1999. "Permian paleoclimate data from fluid inclusions in halite". Chemical Geology, 154:113-132.
Boggs, S.J., 1995. Principles of Sedimentology and Stratigraphy. New Jersey, Prentice Hall, 774 p.
Cartwright, J.A., 1997. Polygonal extensional fault systems: a new class of structure formed during the early compaction of shales. In Fluid Flow and Transport in Rocks (eds B.Jamtveit & B.W.D.Yardley). London: Chapman & Hall., p.35-56.
Dean, W.E., Davies, G.R., & Anderson, R.Y., 1975. Sedimentological significance of nodular and laminated anhydrite. Geology, 33: 67-372.
De la Cueva, C., 1992. Analisis del contenido en agua en formaciones salinas. Su aplicaci_on al almacenamiento de residuos radioactivos. In:Unpublished, PhD thesis, Universitat de Barcelona, 175p.
Dunham, R.J., 1962. Classification of carbonate rocks according to their depositional texture, in W.E. Ham, ed., Classification of Carbonate Rocks: Tulsa, OK. American Association of Petroleum Geologists, Memoir.1:108-121.
Einsele, G., 2000. Sedimentary Basin, Evolution, Facies, and Sediment Budget. Springer-Verlag Berline Heidelberg, 792 p.
El Tabakh, M., Schreiber, B.C., & Warren, J.K., 1998. Origin of fibrous gypsum in the Newark Rift Basin, Eastern North America. Journal of Sedimentary Research, 68:88-9.
El-Tabakh, M., Mory, A., Schreiber, B.C., & Yasin, R., 2004. Anhydrite cement after dolomitization of shallow marine Silurian carbonate of the Gascoyne Platform, Southern Carnnarvon Basin, Western Australia. Sedimentary Geology, 164:75-87.
Flugel, E., 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer Verlag, New York, 996 p.
Garcia-Ruiz, J.M., Villasuso, R., Ayora, C., Canals, A., & Otalora, F., 2007. Formation of natural gypsum megacrystals in Naica, Mexico. Geology, 35:327–330.
Ghazban, F., 2007. Petroleum Geology of the Persian Gulf. Tehran University Press, Iran, 707 p.
Gindre-Chanu, L., Warren, J.K., Puigdefabregas, C., Sharp, I.R., Peacock, D.C.P., Swarts, R., Poulsen, R., Ferreira, H., & Henrique, L., 2014. Diagenetic evolution of Aptian evaporites in the Namibe Basin, (south-west Angola). Sedimentology, 62: 204-233.
Gudmundsson, A., Fjeldskaar, I., & Brnner, S.L., 2002. Propagation pathways and fluid transport of hydrofracturesin jointed and layered rocks in geothermal fields. Journal of Volcanology and Geothermal Research, 116: 257-278.
Gustavson, T.C., Hovorka, S.D., & Dutton, A.R., 1994. Origin of satin spar veins in evaporite basins. Journal of Sedimentary Research, 64: 88-94.
Heydari, E., 2008. Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran. Tectonophysics, 451:56-70.
Holliday, D.W., 1970. The petrology of secondary gypsum rocks. Journal of Sedimentary Petrology, 40:734-744.
Jakucs, L., 1977. Morphogenetics of Karst Regions,Wiley (Halstead Press), New York, 284p.
James, N.P., & Kendall, A.C., 1992. Introduction to carbonate and evaporite facies models. In: Facies Models: Response to Sea Level Change (Eds. R.G. Walker and N.P. James). Geological association of Canada, Geotext 1: 265-275.
Johnson, K.S., 2008. Evaporite-karst problems and studies in the USA. Environmantal Geology, 53:937-994.
Jowett, E.C., Cathiles, L.M., & Davis, B.W., 1993. Predicting depths of gypsum dehydration in evaporitic sedimentary basins. American Association of Petroleum Geologists Bulletin, 77: 402-13.
Kasprzyk, A., 2003. Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporate basin of Carpatian Foredeep, Southern Poland. Sedimentary Geology, 154: 167-194.
Kirkland, D.W., 2003. An explanation for the varves of the Castile evaporates (upper Permian), Texas and New Mexico, USA. Sedimentology, 50: 898-920.
Koop, W., & Stoneley, R., 1982. Subsidence history of the middle East Zagros basin, Permian to Recent, Philosphical Transactions of Royal Society of Lodon Series A. Mathematical and Physical Sciences, 305:149 -168.
Kuznetsov, V.G., 2006. Cyclicity of shallow-water carbonate sediments in different climatic zones. Lithology and Mineral Resources, 41: 505–517.
Lugli, S., 2001. Timing of post-depositional events in the Burano Formation of the Secchia valley (Upper Triassic, Northern Apennines), clues from gypsum-anhydrite transitions and carbonate metasomatism. Sedimentary Geology, 140: 107–22.
Machel, H.G., 1992. Low-temperature and high-temperature origins of elemental sulfur in diagenetic environments. In: Wessel, G.R. & Wimberly, B.H., (eds.), Native Sulfur. Developments in Geology and Exploration, 3-22.
Machel, H.G., 1985. Fibrous gypsum and fibrous anhydrite in veins. Sedimentology, 32: 443–54.
Maiklem, W.R., Bebout, D.G., & Glaister, R.P., 1969. Classification of anhydrite-a practical approach. Bulletin of Canadian Petroleum Geology, 17: 194-233
Mazzullo, S.J., 1992. Geochemical and neomorphic alteration of dolomite: a review. Carbonates and Evaporites, 7: 21-37.
Melvin, J.L., 1991. Evaporates, Petroleum and Mineral Resources. Elsevier Science Publishing Company, 556 p.
Melim, L.A., & Scholle, P.A., 2002. Dolomitization of the Capitan Formation fore reef facies (Permian, West Texas and New Mexico): seepage reflux revisited. Sedimentology, 49: 1207-1227.
Morgas, M., Martinez, C., Baques, V., Playa, E., Trav, A., Alias, G., & Cantarero, I., 2013. Diagenetic evolution of a fractured evaporite deposit (Vilobi Gypsum Unit, Miocene, NE Spain). Geofluids, VII: 1-14
Murris, R.J., 1980. Middle East: Stratigraphic evolution and oil habitat. American Association of Petroleum Geologists Bulletin, 64: 597–618.
NIOC (National Iranian Oil Company), 1979. Geological Quadrangle map of Iran No.G-11 (Shiraz), scale 1: 250,000. Exploration and Production Division, Tehran.
Orti, F., Rosell, L., Ingles, M., & Playa, E., 2007. Depositional models of lacustrine evaporites in the SE margin of the Ebro Basin (Paleogene, NE Spain). Geological Acta, 5: 19–34.
Orti, F., 2010. Selenite facies in marine evaporites: a review. In: Kendall, Ch.G.St.C. & Alsharhan A.S., (eds.), Quaternary carbonate and evaporite sedimentary facies and their ancient analogues: A tribute to Douglas James Shearman. International Association of Sedimentologists. Special Publication 43: 431-464.
Peryt, T.M., 2001. Gypsum facies transitions in basin-marginal evaporites: Middle Miocene (Badenian) of West Ukraine. Sedimentology, 48: 1103-1119.
Peryt, T.M., 2013. Palaeogeographical zonation of gypsum facies: Middle Miocene Badenian of Central Paratethys (Carpathian Foredeep in Europe). Journal of Palaeogeography, 2: 225-237.
Philipp, S.L., 2008. Geometry and formation of gypsum veins in mudstones at Watchet, Somerset, SW England, Geological Magazine. Cambridge University Press, 145: 831-844.
Piryaei, A., Reijmer, J.G., Frans, S.P., Van buchem, F.S.P., Yazdi-Moghadam, M., Sadouni, J., & Danelian, T., 2010. The influence of Late Cretaceous tectonic processes on sedimentation patterns along the northeastern Arabian plate margin (Fars Province, SW Iran). In: Leturmy, P., & Robin, C., (eds.) Tectonic and Stratigraphic Evolution of Zagros and Makran during the Mesozoic-Cenozoic. Geological Society, London, Special Publications, 330: 211–251.
Playa, E., Orti, F., & Rosell, L., 2000. Marine to nonmarine sedimentation in the upper Miocene evaporates of the Eastern Betics, SE Spain: sedimentological and geochemical evidences. Sedimentary Geology, 133: 135-166.
Qing, H., Bosence, D.W.J., & Rose, P.F., 2001. Dolomitization by penesaline seawater in early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean. Sedimentology, 48:153–163.
Rouchy, J.M., Bernet-Rollands, M.C., & Maurin, 1994. Descriptive Petrography of Evaporites; Application in the field, Subsurface and the Laboratory, Evaporite sequences in Petroleum Exploration. Geological Methods, Editions Techniq, 71-123.
Schreiber, B.C., Fridman, G.M., Decima, A., & Schreiber, E., 1976. The depositional environments of the Upper Miocene (Messinian) evaporate deposits of the Sicilian Basin. Sedimentology, 23: 729-760.
Schreiber, B.C., 1988. Subaqueous evaporite deposition. In: Schreiber, B.C., (ed.), Evaporites and Hydrocarbons. Columbia University Press, New York, 182-255.
Schroder, S., Schreiber, B.C., Amthor, J.E., & Matter, A., 2003. A depositional model for terminal Neoproterozoic - Early Cambrian Ara Group evaporates in south Oman. Sedimentology, 50: 879-898.
Shabafroz, R., Mahboubi, A., Moussavi-Harami, R., & Amiri Bakhtiar, H., 2013. Facies analysis and sequence stratigraphy of the evaporite bearing Sachun Formation at the type locality, South East Zagros Basin, Iran. Carbonate and Evaporites, 28: 457-574
Shearman, D.J., Mossop, G., Dunsmore, H., & Martin, H., 1972. Origin of Gypsum veins by hydraulic fracture. Transactions of the institute of Mining and Metallurgy. Section B. Applied Earth Sciences, 81:149-55.
Sherkati, S., Molinaro, M., Frizon de Lamotte, M., and Letouzey, J., 2005. Detachment folding in the Central and Eastern Zagros fold-belt (Iran): salt mobility, multiple detachments and late basement control. Journal of Structural Geology, 27: 1680–1696
Sibley, D.F., & Gregg, J.M., 1987. Classification of dolomite rock textures. Journal of Sedimentary Petrology, 57: 967-975.
Sonnenfeld, P., 1984. Brines and evaporate. Acadamic press, INC, 613 p.
Stafford K.W., Ulmer-Scholle, D., & Rosales-Lagarde, L., 2008. Hypogene Calcitization: Evaporite Diagenesis in the Western Delaware Basin. Carbonates and Evaporites, 23: 89-103.
Stanton, R.J.J., 1966. The solution brecciation process. Geological Society of America Bulletin, 77: 843-848.
Stocklin, J., 1968. Structural history and tectonic of Iran. American Association of Petroleum Geologists Bulletin (AAPG), 52: 1229-1258.
Stow, D.A., 2005. Sedimentary Rock in the Field, A Color Guide. Academic Press, 320p.
Strohmenger, C.J., Shebl, H., Al-Mansoori, A., Al-Mehsin, K., Al-Jeelani, O., Al-Hosani, I., Al-Shamry, A., & Al-Baker, S., 2011. Facies stacking patterns in a modern arid environment: a case study of the Abu Dhabi sabkha in the vicinity of Al-Qanatir Island, United Arab Emirates. In: Kendall, G.St.C., & Alsharhan, A.S., (eds.), Quaternary carbonate and evaporite sedimentary facies and their ancient analogues. International Association of Sedimentologists, Special Publication 43: 149-183
Testa, G., & Lugli, S., 2000. Gypsum anhydrite transformation in Messinian evaporates of central Tuscany (Italy). Sedimentology Geology, 130: 249–268.
Torres, G., Playa, E., Alias G., Correa, A., Chong, G., & Pueyo, J.J, 2012. Transformaciones texturales y minerales de evaporitas en las facies de los esquistos verdres. Distrito minero Teresa del Colmo (N de Chile). In: VIII Congreso Geologico de Espana. Sociedad Geologica de Espana, Oviedo, Spain, Geo-Temas XIII.
Ulmer-Scholle, D.S., & Scholle, P.A., 1994. Replacement of evaporites within the Permian Park City Formation, Bighorn Basin, Wyoming, USA. Sedimentology, 41: 1203–1222.
Vaziri-Moghaddam, H., Kimiagari, M., & Taheri, A., 2006. Depositional environment and sequence stratigraphy of the Oligo- Miocene Asmari Formation in SW Iran. Facies, 52:41-51.
Warren, J., & Kendall. C., 1985. Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) set‌ting, modern and ancient. American Association of Petroleum Geologists., 69: 1013-1023.
Warren, J.K., 1996. Evaporates brines and base metals: What is an evaporate? Defining the rock matrix. Australian Journal of Earth Science, 43: 115-132.
Warren, J., 1999. Evaporites, There evolution and economics, Blackwell Science, 438p.
Warren, J., 2000. Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis. Australian Journal of Earth Sciences, 47: 179-208
Warren, J.K., 2000. Dolomite; occurrence, evolution and economical important association. Earth science Review, 52: 1-18.
Warren, J.k., 2006. Evaporates: Sediments, Resources and Hydrocarbons. Springer-Verlag Berlin, 1035 p.
Warren, J.K., 2010. Evaporites through time: tectonic, climatic and esutatic controls in marine and non-marine deposits. Earth Science Review, 98: 217-268.
Wilstchko, D.V., & Morse, J.W., 2001. Crystallization pressure versus ‘crack seal’ as the mechanism for banded veins. Geology, 29: 79–82.
Ziegler, M.A., 2001. Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. Geo Arabia, 6: 445-503.
CAPTCHA Image