Palynofacies and microfacies of Kalat Formation at Chehel-Kaman Valley section (north east Khorasan Razavi)

Document Type : مقالات پژوهشی

Authors

Islamic Azad University

Abstract

Introduction
The Kopet-Dagh Basin formed on the southern margin of the Eurasian Plate since the Jurassic up to the Tertiary. The Kopet-Dagh Basin marks the northern boundary of the Alpine-Himalayan Orogeny in northeastern Iran and also corresponds to the morphological boundary between Turkmenistan and Iran. The Kopet-Dagh Basin is an intracontinental basin and its topography dies out toward southeast in the Afghanistan, indicating a tectonically stable part of the basin. Kalat Formation (Late Cretaceous) is one of carbonate unit in the Kopet-Dagh sedimentary basin (Afshar-Harb, 1994). So far, various studies have been done on this formation, but for the first time, the microfacies and palynofacies of the Kalat Formation have been carried out simultaneously.
In order to study Kalat Formation, one section is measured in the Chehel-Kaman valley. Kalat Formation in this section is located about 163 km from Mashhad with a geographic coordinates of 36° 28ʹ 8ʺ North and 60° 23ʹ 42.4ʺ East and is 310 meters thick and consists of shale and limestone alternation. In order to study palynofacies and microfacies in Chehel-Kaman section (310 m shale and limestone), 36 samples of limestone and 22 samples of shale have been studied. The description of the limestone textures follows the Dunham (1962) classification and shales Tyson charts (1993).
 
Discussion and Results
Study of limestone thin sections led to identification of three sedimentary facies, A, B, C, including barrier, restricted lagoon and tidal flat that are composed of 12 subfacies. These facies can be classified in two group, carbonates and hybrid. Studying of shale led to identify two facies, A and B. Facies A is equivalent to type I Palynofacies and facies B is equivalent to type II Palynofacies. Shale facies A shows semi restricted lagoon into tidal flat and shale facies B shows deeper semi restricted lagoon to shoal and open marine environment. In the basis of microfacies and palynofacies studies, we can say that Kalat Formation has been deposited in a homoclinal carbonate ramp (Flugle, 2010). 
Because the palynofacies and paleo-sedimentary environments of the shale parts of Kalat Formation were based on palynomorphs (dinoflagellates), 52 species of 36 genera of dinoflagellates were identified. In addition to dinoflagellates, spores and bisaccate pollen grains, fungal spores and foraminiferal test linings are also observed.
The palynological parameters of the shale facies of this formation indicate that the lability factor in this section is less than one. Decreasing this factor indicates an increasing the amount of oxygen in the sedimentary environment. Therefore, it is possible that semi-oxygenated conditions dominate during the time of the deposition of these facies. However, according to the numbers obtained, the oxygen content in type palynofacies (A) is more than type (B). On the other hand, the ratio of AOM trans to dark AOM indicates that despite the presence of oxygen, the amount of this element is not high (the number obtained is greater than one), which indicates low oxygen conditions in the parts of shale at the time of sedimentation. However, the amount of oxygen in type palynofacies (A) is more than type (B) (Boulter & Riddick, 1986).
To determine more precisely the amount of oxygen and sedimentation rate from a complementary factor (transparent and dark AOM ratio to marine palynomorphs), the best conservation degree of marine palynomorphs (especially dinoflagellates) is in high oxygen saturation and sedimentation rhythms.
If the low sedimentation rate and the low oxygen content transmitted are of the palynomorphs to the transparent AOM, and in the opposite case, palynomorphs into a dark AOM. According to the measurement of the percentage of transparent AOM percent to marine palynomorph along the stratigraphic column, this is high which indicates low oxygen conditions, and the ratio of the percentage of dark AOM to marine marine palynomorph is low, which indicates low oxygen conditions and high sedimentation rate for palynofacies of the Kalat Formation. Of course, the numbers indicate higher oxygen content and higher precipitation rates for type palynofacies (A) than type (B) (Bombardier & Gorin, 2000).
The ratio of the equal dark palynomaceral to the blade - shaped dark, along with the labilatory factor, expresses the amount of energy governing the environment. Blade - shaped dark palynomaceral can travel a long distance due to high flotation, and are abundant in remote areas. According to the results obtained from the study of palynological slides, the equal dark palynomaceral is also greater than the blade, indicating the close proximity to the coast of the shale parts of the Kalat Formation and the resulting numbers indicate the shallowness of the type Palynofacies (A) than type (B), Kleithriasphaeridium truncatum. The presence of species Cannosphaeropsis utinensis Oligosphaeridium buciniferum and Spiniferites ramosus is an open sea. The abundance of the above examples in Palynofacies type (B) is likely to be related to open sea environment for this facies (Chiaghanam et al., 2013).
On the other hand, species like Alterbidinium varium, Andalusiella dubia, Andalusiella gabonensis, Andalusiella polymorpha, Circulodinium distinctum, Cerodinium diebelii, Godavariella venkatachalae, Palaeocystodinium bulliforme, Phelodinium kozlowskii and Palaeocystodinium lidiae show shallow conditions. The palynological factors and the presence of the above species, as well as the presence of spores and bisaccate pollen in Palynofacies type (A), are indicative of the shallow conditions of these deposits.  
 
Key word: Kalat formation; microfacies; palynofacies; depositional environment; homoclinal ramp.
 
References
Afshar-Harb, A., 1994. Kopet dagh geology, Geological Survey of Iran publishers, 276 p.
Bombardier, L., & Gorin, G.E., 2000. Stratigraphic and distribution of sedimentary organic matter in Upper Jurassic Carbonates of SE France. Sedimentary Geology, 132: 177-203.
Boulter, M.C., & Riddick, A., 1986. Classification and analysis of palynodebris from the palaeocene sediments of the Forties Field. Sedimentology, 33: 871- 886.
Chiaghanam, O.I., Nwozor, K.K., Chiadikobi, K.C., Omoboriowo, A.O., Soronnadi-Ononiwu, C.G., Onuba, L.N. & Ofoma, A.E., 2013. Lithofacies, Palynology and Paleoenvironmental Study of Early Campanian to Mid-Maastrichtian Deposits of Udi and Environs in the Anambra Basin, South Eastern Nigeria. International Journal of Science and Technology, 2 (6): 453- 470.
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E., (eds.), Classification of Carbonate Rocks. American Association of Petroleum Geologists Memoir, 1: 108-121.
Flugel, E., 2010. Microfacies of Carbonate Rocks, Analysis Interpretation and Application. Springer-Verlage, Berline, Heidelberg. 976 p.
Tyson, R.V., 1993. Palynofacies analysis. Applied Micropaleontology, 153-191.

Keywords


منابع
افشار حرب، ع.، 1373. زمین‌شناسی کپه داغ، انتشارات سازمان زمین شناسی کشور، 276 ص.
ژیانی، ف.، علامه، م.، جوانبخت، م.، 1394. پالینوفاسیس سازند کلات در برش دره چهل کمان (خراسان رضوی). نهمین همایش انجمن دیرینه‌شناسی ایران، دانشگاه فردوسی مشهد.
سعیدی رضوی، ب.، خسروتهرانی، خ.، آقانباتی، ع.، موسوی حرمی، ر. ، آریایی، ع.ا.، 1389. نظری اجمالی بر قسمت فوقانی سازند کلات در حوضه رسوبی کپه داغ. فصلنامه زمین شناسی کاربردی، دانشگاه آزاد اسلامی واحد زاهدان، 286 ـ 278.
عبدالمالکی، ج.، رحیم پور بناب، ح.، توکلی،و.، اسدی اسکندر، ا.، 1392. محیط رسوبی، دیاژنز و چینه‌نگاری سکانسی بخش دالان زیرین در میدان گازی گلشن، خلیج فارس، پژوهش‌های چینه‌نگاری و رسوب‌شناسی، شماره 52 (3): 27.
علامه، م.، قاسمی نژاد، ا.، سعیدی، ع.، 1386. پالینولوژی و محیط دیرینه سازند کلات در شرق حوضه رسوبی کپه‌داغ. فصلنامه زمین‌شناسی کاربردی، دانشگاه آزاد اسلامی واحد زاهدان، 187-200.
علامه، م.، موسوی فرد، ه.، 1393. دیرینه بوم‌شناسی بخشهای شیلی سازند کلات بر مبنای استراکودها در حوضه رسوبی کپه‌داغ برش چهچهه (خراسان رضوی). مجله دیرینه‌شناسی، 2 (1): 63-76.
علامه، م.، جوانبخت، م.، ژیانی، ف.، 1394. پالینولوژی و پالئواکولوژی سازند کلات در برش دره چهل کمان (خراسان رضوی). دومین کنگره بین‌ المللی زمین‌شناسی کاربردی، مشهد.
محبوبی، ا.، لاسمی، ی.، موسوی حرمی، ر.، 1374. بررسی رخساره‌های آهکی و تفسیر محیط رسوبگذاری سازند کلات (کرتاسه فوقانی) در شرق حوضه کپه داغ در شمال شرق ایران. مجله علوم دانشگاه تهران،24-37.
محمودی، س.، حسنی عروس محله، آ.، وحیدی نیا، م.، 1391. معرفی بریوزوآهای سازند کلات در برش تنگ چهچهه، شمال شرق مشهد. اولین همایش زمین‌شناسی فلات ایران، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته.
ندافان، ت.، وحیدی نیا، م.، عاشوری، ع.، 1374. بررسی میکروفاسیس و محیط رسوبگذاری سازند کلات در برش تنگ دو برادر شمال شرق مشهد. شانزدهمین همایش انجمن زمین شناسی ایران، دانشگاه شیراز.
وحیدی نیا، م.، صادقی، ع.، شمیرانی، ا.، آریایی، ع.، آدابی، م.، 1386. میکروبایواستراتیگرافی و محیط رسوبی سازند کلات در برش تنگ چهچهه (شمال شرق مشهد) و مقایسه آن با برش الگو. مجموعه مقالات یازدهمین همایش انجمن زمین‌شناسی ایران، دانشگاه فردوسی مشهد، 1815-1823.
Adachi, N., Ezaki, Y., & Liu, J., 2004. The origins of peloids immediately after the end-permian extinction, Guizhou Province, South China. Sedymentary Geology, 164: 161-178.
Aurell, M., Badenas, B., Ipas, J., & Ramajo, J., 2009. Sedimentary evaloution of an Upper Jurassic carbonate ramp (Iberian Basin, NE Spain). In: Van Buchem, F., Gerdes, F.K, & Esteben, M., (eds,), Refrence models of Mesozoic and Cenozoic carbonate systems in Europe and the Middel East – strtigraphy and diagenesis. Geology socaity London Special Publish, 153: 138-161.
Bachman, M., & Hirsch, F., 2006. Lower cretaceous carbonate platform of estern Levant (Galilee and the Golan Heights), Stratigraphy and second-order sea level change. Cretaceous Research, 27: 487-512.
Bombardier, L., & Gorin, G.E., 2000. Stratigraphic and distribution of sedimentary organic matter in Upper Jurassic Carbonates of SE France. Sedimentary Geology, 132: 177-203.
Boulter, M.C., & Riddick, A., 1986. Classification and analysis of palynodebris from the palaeocene sediments of the Forties Field. Sedimentology, 33: 871- 886.
Bujak, J.P., 1984. Cenezoic dinoflagellate cysts and acritarch from the Bering Sea and northern North Pacific, DSDP Leg 19. Micropaleontology, 30: 180- 212.
Burchette, T.P., & Wright, V.P., 1992. Carbonate ramp depositional Systems. Sedimentary Geology, 79: 3-57.
Carozzi, AV., 1989. Carbonate Rock Depositional Modle. A Microfacies Approach, Prentice-Hall, 604 p.
Chiaghanam, O.I., Nwozor, K.K., Chiadikobi, K.C., Omoboriowo, A.O., Soronnadi-Ononiwu, C.G., Onuba, L.N., & Ofoma, A.E., 2013. Lithofacies, Palynology and Paleoenvironmental Study of Early Campanian to Mid-Maastrichtian Deposits of Udi and Environs in the Anambra Basin, South Eastern Nigeria. International Journal of Science and Technology, 2: 453- 470.
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E., (ed.), Classification of Carbonate Rocks. American Association of Petroleum Geologists, 1: 108–121.
Downie, C., Hussain, M.A., & Williams, G.L., 1971. Dinoflagellate cyst and Acritarch association in the Paleogene of Southeast England. Geoscience, 3: 29- 35.
El-Azabi, M.H. & El-Araby, A., 2005, Depositional facies, environments and sequence stratigraphic interpretation of the Middle Triassic–Lower Cretaceous (pre-Late Albian) succession in Arif El-Naga anticline, northeast Sinai, Egypt, Journal of African Earth Sciences, 41: 119-143.
Einsele, G., 2000. Sedimentary Basin Evolution, Facies, and Sediment Budget (2 ndedition). Springer-Verlag, 292 p.
Folk, R.L., 1959. Practical petrographic classification of limestones. Bulletin of American Association of Petroleum Geologists, 43 (1): 1-38.
Flugel, E., 2004. Microfacies of Carbonate rocks, Springer-Verlage, 1st edition, 976 p.
Flugel, E., 2010. Microfacies Analysis Of Carbonate Rocks, Analyses. Interpretation and Application, Springer-verlag, Berlin, 976 p.
Grabau, A.W., 1904. On the classification of sedimentary rock, American Geology, 33: 228-247.
Hafmann, A., Dirks, P.H.G.M., & Jelsma, H.A., 2004. Shallowing upward carbonate cycles in the Blingwe Greenston belt, Zimbabwe: A record of Archeansea level oscillation. Journal Sedimentary Research, 74: 64-81.
Heimhofer, U., Hochuli, P.A., Herrle, J.O.N., & Weissert, H., 2005. Contrasting origins of Early Cretaceous black shales in the Vocontian basin: Evidence from Palynological and calcareous nannofossil records. Palaeogeography, palaeoclimatology, Palaeoecology, 235 p.
Irwin, M.L., 1965. General theory of epeiric clear water sedimentation. American Association of Petroleum Geologists Bulletin, 49: 445.
Mahmoud, M.S., & Moawad, A.R.M.M., 2000. Jurassic- Cretaceous (Bathonian to Cenomanian) Palynology and stratigraphy of the west Tiba- 1 berehole, Northern Western Desert Egypt. Journal of Africa Earth Science, 30: 401- 416.
Masse, J.P., Fenerci, M., & Pernarcic, E., 2003. Palaeobathymetric reconstruction of peritidal carbonates, Late Barremian, Urgonian, sequences of Provence (SE France). Palaeogeography, Palaeoclimatology, Palaeoecology, 200: 65-81.
Moheghi, M., Hadavi, F., Rahimi, B., 2013. Investigation of the Boundary between Abderaz and Kalat Formation Based on Calcareous Nannofossils in West Kopet- dagh (NE IRAN). Scientific research (Open Jurnal of Geology), 178- 186.
Palma, R., Lopez-Gomez, J., Piethe, R., 2007. Oxfordian ramp system (La Manga Formation) in the Bardas Blancas area (Mendoza Province) Neuquen Basin, Argentina. Facies and depositional sequences Sedimentary Geology, 195: 113-134.
Quattrocchio, M.E., Martinez, M.A., Carpinelli, P.A., & Volkheimer, W., 2006. Early Cretaceous palynostratigraphy, palynofacies and palaeoenvironments of well section in northeastern Tierra del Fuego, Argentina. Cretaceous Research, 27: 584-602.
Read, J.F., 1985. Carbonate platform facies models. American Association Petrolume Geology Bulletin, 69: 1-12.
Roncaglia L., 2002. Lower Maastrichtian dinoflagellates from the Viano Clay Formation at Viano, northern Apennines, Italy. Cretaceous Research, 23: 65–67.
Samanckassou, E, Tresch, J., & Strasser, A., 2005. Origin of Peloides in Early Cretaceous deposits, Dorest, South England. Facies, 51: 264-273.
Schioler, p., 2002. Palynofacies and sea-level changes in the Middle Coniacian- Late Campanian (Late Cretaceous) of the East Coast Basin, New Zeland. Palaeogeography, palaeoclimatology, palaeoecology, 188: 101-125.
Sluijs, A., Pross, J., & Brinkhuis, H., 2005. From greenhouse to icehouse organic- walled dinoflagellate cysts as paleoenvironmental indicators in the paleogene. Earth Science Reviews, 68: 281- 315.
Smelror M., & Leereveld, H., 1989. Dinoflagellates and acritarch assemblage from late Bathonian to early Oxfordian of Montagne Crussol, Rhone Nalley Southern France. Palynology, 13: 121- 141.
Soronnandi-Ononiwu, G.C., Omoboriowo, A.O., Yikarebogha Y., & Chiaghanam O.I., 2014. Palynology & Paleoenviromental Study Of Akukwa-1 Well, Niger Delta and Anambra Basins, Nigeria. International Journal of Scientific & Technology Research, 3: 297-304.
Traverse, A., 2007. Paleopalynology. 2nd Edition, Springer, 813 p.
Tucker, M.E., 1991. Sedimentary Petrology. Blackwell Scientific Publication, 260 p.
Tucker, M.E., & Wright, P., 1990. Carbonate Sedimentology. Blackwell Scientific Pubublications, Oxford, 482 p.
Tucker, M.E., 2001. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks, 2nd edition. Blackwell Scientific Publication, London, 262 p.
Tyson, R.V., 1993. Palynofacies analysis. Applied Micropaleontology, 153-191.
Van Der Zwan, C.J., 1990. Palynostratigraphy and palynofacies reconstruction of the Upper Jurassic to Lowermost Cretaceous of the Dra field, offshore Mid Norway. Review of Palaeobotany and Palynology, 62: 157-186.
Waveren, I., & Visscher, H., 1994. Analysis of the composition and selective preservation of organic matter in surfical deep-sea sediment from a high productivity area (Bandasa, Indonesia). Palaepgeography, Palaeoclimatology, Palaeoecology, 112: 85-111.
Wilpshaar. M., & Leereveld, H., 1994. Palaeoenvironmental change in the Early Cretaceous Vocontian Basin (SE France) reflected by dinoflagellate cysts. Review of palaeobotany and Palynology, 84 (1-2): 121-128.
Wilson, J.L., 1975. Carbonate Facies in Geological History. Springer-Verlag, Berlin, 471 p.
Wisler, L., Funk, H., & Weissert, H., 2003. Response to Early Cretaceous carbonate platform to change in atmospheric carbonate dioxide level. Paleaogeography, Paleaoclimatology, Paleaoecology, 200: 187-205.
Zonneveld, K., Versteegh, G., & Lange, G., 1997. Preservation of organic-Walled dinoflagellate cyst in defferent oxygen regies: a 1000 year natural experiment. Marine Micropaleontology, 29: 393-405.
CAPTCHA Image