Petrography and geochemistry of major, minor, and trace elements of bauxitic facies: A case study from Gazanjeh deposit, southeast of Mahabad, NW Iran

Document Type : مقالات پژوهشی

Authors

Urmia

Abstract

Introduction
Important known bauxite deposits in Iran, which occur in the so called Irano-Himalayan belt, are spatially distributed in four regions, namely (1) the northwest of Iran (e.g. Bukan, Shahindezh), (2) the Zagros heights, (3) the Alborz Mountain Range and (4) the central plateau of Iran. They are restricted to Permian, Permo-Triassic, Triassic, Triassic-Jurassic, and Middle Cretaceous (Cenomanian–Turonian) in ages (Abedini & Calagari, 2014).
The Gazanjeh area is located about 25 km southeast of Bukan city, south of West-Azarbaidjan Province, NW Iran. The stratigraphical gap emerged during the Late Permian is manifested by the development of a bauxite horizon in this area. The propose of the present study is to indentify the texture, mineralogical types, controlling factors of distribution and mobilization of major, minor, and trace elements in residual facies, paleo-geographical conditions, sedimentary environment of formation and development of the bauxite deposit in the Gazanjeh area.
Material and Methods
In this study, a profle perpendicular to the strike of bauxitic layers was selected and 16 systematic and
representative samples with varying intervals (80-150 cm) were collected. Laboratory works began with preparation of thin and /or polished sections from all 16 samples and their examination under microscope. For the identification of mineralogical phases in the bauxites, 8 samples from a selective section were chosen for X-ray diffraction (XRD) analyses.  XRD analyses were carried out using diffractometer model D-5000 SIEMENS in Geological Survey of Iran (Tehran). The chemical compositions of the bauxites (#16) were determined at the Kansaran Binaloud Company, Tehran, Iran. The values of major and minor elements were determined by X-ray fluorescence (XRF). Rare Trace element contents were determined by inductively coupled plasma mass spectrometry (ICP-MS). Loss on ignition (LOI) was determined by weight loss of 1 g sample after heating at 1000 °C for 60 min.
Discussion Since the rocks are fine-grained, identifcation of minerals in the bauxite ores under a microscope was not possible.Terefore, petrographic examinations were principally focused on textural features of the ores. Considering the mode of distribution of texture-forming components and matrix, various kinds of textures such as pelitomorphic, microgranular, ooidic, pisoidic, macro-pisodic, spastoidic, colloform, nodular, pseudo-breccia, breccia, and clastic identified within the ores. These textures show allogenic origin for deposit (Bardossy, 1982). The pelitomorphic and colloformic textures imply an indirect bauxitization and weak draining processes during the evolution of this deposit. The development of hematitic nodules in the ores can be attributed to factors such as variation in water activity in pedogenic environments and/or climatic fluctuations (Mongelli, 2002). The XRD analyses show that the minerals including diaspore, hematite, pyrophyllite, chlorite, chamosite, rutile, anatase, and muscovite-illite are the main mineral phase of the phreatic.Trivariate plot of SiO2-(Al2O3+TiO2)-Fe2O3 (Balsubramaniam et al., 1984) denotes that three distinct mineralogical types can be differentiated within the horizon, namely (1) laterite, (2) ferruginous laterite, and (3) siliceous bauxite. Also, plotting the Kanigorgeh data on trivariate diagram SiO2-Al2O3-Fe2O3 (Schellmann, 1982) attests to the formation of the above ores under moderate to intense lateritization conditions. Trivariate plot of SiO2-Al2O3-Fe2O3 (Meshram & Randive, 2011) reveal that deferritization-ferritization mechanisms and destruction of kaolinite were the most important processes involving during development of ores in this deposit. Comparison of the range of stability fields of major constituent minerals of the bauxite ores with the pH and Eh variations of natural environments (Temur & Kansun, 2006) show that this deposit formed two facies, (1) oxidant-basic and (2) reduction-acidic. Geochemical investigations indicate that the degree of concentration of elements such as V, Zr, Co, Cu, Ga, Hf, Mo, Sc, U, and Zn in oxidant-basic facies and concentration of elements such as Ba, Cr, Ni, Pb, Rb, Sr, and Th in reduction-acidic facies is great. Difference in concentration of elements in these two facies can be associated with occurrence of processes such as adsoption by clays, scavening by hematite and manganese oxides, lateritization intensity, function of carbonates bedrock as geochemical barrier, and chemistry of meteoritic waters (Braun et al., 1990; Mordberg, 1996; Schwertmann & Pfab, 1996; Marques et al., 2004; Fernandez-Caliani & Cantano, 2010; Ndjigui et al., 2013; Abedini & Calagari, 2014).
Keywords: Bauxite; texture; facies; mineralogy; vadose-phreatic environment; elemental distribution; Gazanjeh; Mahabad.
References
Abedini, A., & Calagari, A.A., 2014. REE geochemical characteristics of titanium-rich bauxites: the Permian Kanigorgeh horizon, NW Iran. Turkish Journal of Earth Sciences, 23: 513-532.
Abedini, A., & Calagari, A.A., 2013. Geochemical characteristics of bauxites: the Permian Shahindezh horizon, NW Iran. Neues Jahrbuch für Geologie und Paläontologie, Abhandlugen, 270: 301-324.
Abedini, A., & Calagari, A.A., 2013. Geochemical characteristics of bauxites: the Permian Shahindezh horizon, NW Iran. Neues Jahrbuch für Geologie und Paläontologie, Abhandlugen, 270: 301-324.
Balasubramaniam, K.S., Surendra, M., & Kumar, T.V., 1984. Genesis of certain bauxite profiles from India. Chemical Geology, 60: 227-235.
Bardossy, G., 1982. Karst Bauxites. Elsevier Scientific, Amsterdam, 441 p.
Braun, J.J., Pagel, M., Muller, J.P., Bilong, P., Michard, A., & Guillet, B., 1990. Ce anomalies in lateritic profiles. Geochimica et Cosmochimica Acta, 54: 781-795.
Fernández-Caliani, J.C., & Cantano, M., 2010. Intensive kaolinization during a lateritic weathering event in South-West Spain: Mineralogical and geochemical inferences from a relict paleosol. Catena, 80: 23-33.
Marques, J.J., Schulze, D.G., Curi, N., & Mertzman, S.A., 2004. Trace element geochemistry in Brazilian Cerrado soils. Geoderma, 121: 31-43.
Meshram, R.R., & Randive, K.R., 2011. Geochemical study of laterites of the Jamnagar district, Gujarat, India: Implications on parent rock, mineralogy and tectonics. Journal of Asian Earth Sciences, 42: 1271-1287.
Mongelli, G., 2002. Growth of hematite and boehmite in concretions from ancient karst bauxite: Clue for past climate. Catena, 50: 43-51.
Mordberg, L.E., 1996. Geochemistry of trace elements in Palaeozoic bauxite profiles in northern Russia. Journal of Geochemical Exploration, 57: 187-199.
Ndjigui, P.D., Badinane, M.F.B., Nyeck, B., Nandjip, H.P.K., & Bilong, P., 2013. Mineralogical and geochemical features of the coarse saprolite developed on orthogneiss in the SW of Yaoundé, South Cameroon. Journal of African Earth Sciences, 79: 125-142.
Schellmann, W., 1982. Eine neue Laterit definition. Geologisches Jahrbuch - Reihe D, 58, 31-47.
Schwertmann, U., & Pfab, G., 1996. Structural V and Cr in lateritic iron oxides: Genetic implications. Geochimica et Cosmochimica Acta, 60: 4279-4283.
Temur, S., & Kansun, G., 2006. Geology and petrography of the Mastadagi diasporic bauxites, Alanya, Antalya, Turkey. Journal of Asian Earth Sciences, 27: 512-522.

Keywords


افتخارنژاد، ج.، 1355. نقشه زمین شناسی مهاباد، مقیاس 1:250000. سازمان زمین شناسی و اکتشافات معدنی کشور.
آقانباتی، ع.، 1385. نقشه زمین‌شناسی 1:100000 چهارگوش مهاباد. سازمان زمین شناسی و اکتشافات معدنی کشور.
عابدینی، ع.، 1387. بررسی کانی‌شناسی، ژئوشیمی و ژنز نهشته‌های بوکسیتی ـ لاتریتی پرمین تا تریاس در شمال غرب ایران. رساله دکتری، دانشگاه تبریز، 187 ص.
عابدینی، ع.، کلاگری، ع.ا.، 1388. کانی‌شناسی و خاستگاه نهشته‌های بوکسیتی پرمین در شمال سقز، استان کردستان. مجله بلورشناسی و کانی‌شناسی ایران، 17 (4): 503-518.
عابدینی، ع.، کلاگری، ع.ا.، 1390. مطالعات کانی‌شناسی نورماتیو و ژئوشیمی عناصر کمیاب خاکی افق بازماندی پرمین در شمال خاور ملکان، استان آذربایجان‌شرقی. علوم زمین، 80: 155-162.
عابدینی، ع.، علیپور، ص.، خسروی، م.، 1393. کانی‌شناسی، زمین‌شیمی و کاربردهای صنعتی کان‌سنگ‌های بوکسیت درزی ولی، خاور بوکان، شمال باختر ایران. علوم زمین، 94: 293-304.
عابدینی، ع.، علیپور، ص.، ابدالی، ش.، 1393. کانی‌سازی و زمین‌شیمی عناصر نادر خاکی افق لاتریتی حیدرآباد، جنوب ارومیه، استان آذربایجان‌غربی. علوم زمین، 91: 195-204.
نبوی، م.ح.، 1355. دیباچه‌ای بر زمین شناسی ایران. سازمان زمین‌شناسی و اکتشافات معدنی کشور، 109ص.
Abedini, A., & Calagari, A.A., 2014. REE geochemical characteristics of titanium-rich bauxites: the Permian Kanigorgeh horizon, NW Iran. Turkish Journal of Earth Sciences, 23: 513-532.
Abedini, A., & Calagari, A.A., 2013. Geochemical characteristics of bauxites: the Permian Shahindezh horizon, NW Iran. Neues Jahrbuch für Geologie und Paläontologie, Abhandlugen, 270: 301-324.
Balasubramaniam, K.S., Surendra, M., & Kumar, T.V., 1984. Genesis of certain bauxite profiles from India. Chemical Geology, 60: 227-235.
Bardossy, G., & Combes, P.J., 1999. Karst bauxites: Interfingering of deposition and palaeoweathering. In: Thiry, M., & Simon-Coincon, R., (eds.), Palaeoweathering, Palaeosurface and Related Continental Deposits. New York, NY, USA. John Wiley and Sons, 189-206.
Bardossy, G., 1982. Karst Bauxites. Elsevier Scientific, Amsterdam, 441 p.
Bardossy, G., & Aleva, G.J.J., 1990. Lateritic Bauxite. Elsevier, Amsterdam, 624 p.
Boulange, B., 1984. Les formation bauxitigues lateriques de Cote d Ivoire. Travaux et Doduments ORSTOM, Paris, 175, 341 p.
Braun, J.J., Pagel, M., Muller, J.P., Bilong, P., Michard, A., & Guillet, B., 1990. Ce anomalies in lateritic profiles. Geochimica et Cosmochimica Acta, 54: 781-795.
D′Argenio, B., & Mindszenty, A., 1995. Bauxites and related paleokarst: tectonic and climatic event markers at regional unconformities. Eclogae geologica Helvetiae, 88: 453-499.
Fernandez-Caliani, J.C., & Cantano, M., 2010. Intensive kaolinization during a lateritic weathering event in South-West Spain: Mineralogical and geochemical inferences from a relict paleosol. Catena, 80: 23-33.
Gu, J., Huang, Z., Fan, H., Jin, Z., Yan, Z., & Zhang, J., 2013. Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan-Zhengan-Daozhen area, Northern Guizhou Province, China. Journal of Geochemical Exploration, 130: 44-59.
Hanilçi, N., 2013. Geological and geochemical evolution of the Bolkardaği bauxite deposits, Karaman, Turkey: transformation from shale to bauxite. Journal of Geochemical Exploration, 133: 118-137.
Horbe, A.M.C., 2011. Oxygen and hydrogen isotopes in pedogenic minerals-Implications for paleoclimate evolution in Amazonia during the Cenozoic. Geoderma, 163: 178-184.
Kamineni, D.C., & Efthekhar-Nezad, J., 1977. Mineralogy of the Permian laterite of NW Iran. Tschermaks mineralogische und petrographische Mitteilungen, 24: 195-204.
Lima da Costa, M., da Silva Cruz, G., de Almeida, H.S.F., & Poellmann, H., 2014. On the geology, mineralogy and geochemistry of the bauxite-bearing regolith in the lower Amazon basin: Evidence of genetic relationships. Journal of Geochemical Exploration, 146: 58-74.
Ling, K.Y., Zhu, X.Q., Tang, H.S., Wang, Z.G., Yan, H.W., Han, T., & Wen-Yi Chen, W.Y., 2015. Mineralogical characteristics of the karstic bauxite deposits in the Xiuwen ore belt, Central Guizhou Province, Southwest China. Ore Geology Reviews, 65: 84-96.
Liu, X., Wang, Q., Zhang, Q., Zhang, Y., & Li, Y., 2016. Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit formation conditions. Ore Geology Reviews, 75: 100-115.
Ma, J., Wei, G., Xu, Y., Long, W., & Sun, W., 2007. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochimica et Cosmochimica Acta, 71: 3223-3237.
Marques, J.J., Schulze, D.G., Curi, N., & Mertzman, S.A., 2004. Trace element geochemistry in Brazilian Cerrado soils. Geoderma, 121: 31-43.
Meshram, R.R., & Randive, K.R., 2011. Geochemical study of laterites of the Jamnagar district, Gujarat, India: Implications on parent rock, mineralogy and tectonics. Journal of Asian Earth Sciences, 42: 1271-1287.
Mindszenty, A., 1984. The lithology of some Hungarian bauxites: a contribution of the paleogeographic reconstruction. Acta Geologica Academiae Scientiarum Hungaricae, 27: 441-455.
Mongelli, G., 2002. Growth of hematite and boehmite in concretions from ancient karst bauxite: Clue for past climate. Catena, 50: 43-51.
Mordberg, L.E., 1996. Geochemistry of trace elements in Palaeozoic bauxite profiles in northern Russia. Journal of Geochemical Exploration, 57: 187-199.
Mutakyahwa, M.K.D., Ikingura, J.R., & Mruma, A.H., 2003. Geology and geochemistry of bauxite deposits in Lushoto district, Usambara Mountains, Tanzania. Journal of African Earth Sciences, 36: 357-369.
Muttoni, G., Gaetani, M., Kent, D.V., Sciunnach, D., Angiolini, L., Berra, F., Garzanti, E., Mattei, M., & Zanchi, A., 2009. Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia, 14: 17-48.
Ndjigui, P.D., Badinane, M.F.B., Nyeck, B., Nandjip, H.P.K., & Bilong, P., 2013. Mineralogical and geochemical features of the coarse saprolite developed on orthogneiss in the SW of Yaounde, South Cameroon. Journal of African Earth Sciences, 79: 125-142.
Newman, A.D.C., 1987. Chemistry of clays and clay minerals. Mineralogical Society, Monograph, 6: 1-480.
Nouazi Momo, M., Yemefack, M., Tematio, P., Beauvais, A., & Ambrosi, J.P., 2016. Distribution of duricrusted bauxites and laterites on the Bamileke plateau (West Cameroon): Constraints from GIS mapping and geochemistry. Catena, 140: 15-23.
Oloriz, F., Reolid, M., & Rodriguez-Tovar, F.J., 2002. Taphonomic features in Upper Oxfordian ammonite assemblages (Bifurcatus Zone) from the Navalperal section (Internal Prebetic, Betic Cordillera). In: Renzi, M., Pardo, M.V., Belinchon, M., Peñalver, E., Montoya, P., & Marquez-Aliaga, A., (eds.), Currents topics ontaphonomy and fossilization, Col-leccioEncontres Valencia, 215-222.
Price, G.D., Valdes, P.J., & Sellwood, B.W., 1997. Predication of modern bauxite occurrence: Implications for climate reconstruction. Paleogeography, Paleoclimatology, Paleoecology, 131: 1-13.
Schellmann, W., 1982. Eine neue Laterit definition. Geologisches Jahrbuch - Reihe D, 58: 31-47.
Schwertmann, U., & Pfab, G., 1996. Structural V and Cr in lateritic iron oxides: Genetic implications. Geochimica et Cosmochimica Acta, 60: 4279-4283.
Sinkovec, B., 1970. Geology of the Triassic bauxites of Lika, Yoguslavia. Prirodoslovia Istrazivanja. Acta Geology Zagreb, 39: 1-67.
Sparks, D.L., 1995. Environmental Soil Chemistry. Academic Press, New York, 267 p.
Temur, S., & Kansun, G., 2006. Geology and petrography of the Mastadagi diasporic bauxites, Alanya, Antalya, Turkey. Journal of Asian Earth Sciences, 27: 512-522.
Voicu, G., Bardoux, M., & Voicu, D., 1997. Mineralogical norm calculations applied to tropical weathering profiles. Mineralogical Magazine, 61: 185-196.
Wei, X., Ji, H., Li, D., Zhang, F., & Wang, S., 2013. Material source analysis and element geochemical research about two types of representative bauxite deposits and terra rossa in western Guangxi, southern China. Journal of Geochemical Exploration, 133: 68-87.
Yu, W., Wang, R., Zhang, Q., Du, Y., Chen, Y., & Liang, Y., 2014. Mineralogical and geochemical evolution of the Fusui bauxite deposit in Guangxi, South China: From the original Permian ore body to a Quarternary Salento-type deposit. Journal of Geochemical Exploration, 146: 75-88.
CAPTCHA Image