Biostratigraphy, Facies and sedimentary environment of Tirgan Formation in eastern parts of Kopeh- Dagh Basin, based on palynomorphs and foraminifera

Document Type : مقالات پژوهشی

Authors

1 Ferdowsi University of Mashhad

2 University of Tehran

3 Ferdwosi University of Mashhad

Abstract

Introdaction
The Kopet-Dagh sedimentary basin was formed in northeast Iran, southwestern Turkmenistan and north Afghanistan after closure of the Paleotethys Ocean following the Middle Triassic orogeny (Ruttner, 1993). Tirgan Formation, in Kopeh-Dagh basin consists of thick-bedded orbitolinid limestones, limy shale – marl with thin intercalation of limestone.

Materials and Methods
20 rock samples were selected for palynology and 60 for foraminiferal studies. Palynological preparation procedures followed those of Traverse (1988). Removal of carbonates and silicates were done with HCL and HF, then remaining samples sieved with 200µm and 20µm mesh (nylon sieve), using zinc chloride (ZnCl 2) (separation of organic material). The prepared slides were scanned and their palynological contents were identified and counted. The identified specimens were grouped in dinoflagellate cysts and sporomorphs. Moreover, 60 thin sections of Chalky limestone and limy marl have been prepared and studied. Thin sections were stained using Alizarin red and studied using standard petrographic microscopic techniques. Carbonate rocks were classified according to Dunham’s carbonate classification (1962).

Discussion
This study led to identification of 16 species of dinocysts and six benthic foraminifera (Orbitolinids). Of the 20 rock samples prepared for palynology eight sample were from Baghak and 10 sample from Gallehvar sections. Some samples have good preservation and diversity of dinocysts. Based on the obtained biostratigraphy data, a late Barremian-early Aptian age is suggested for these deposits.
According to Palynological studies of Oosting et al. (2006), Skupien & Vašíček (2002) and Torricelli (2000), Barremian- Aptian boundary have been identified by presence of Pseudoceratium pelliferum, Cribroperidinium tenuiceras. Palynological contents of the slides were used for environmental interpretations. These include of three main organic groups: Marine Palynomorphs (MP), Amorphous Organic Matter (AOM) and palynomacerals or Phytoclasts (PH). Palynofacies are related to the composition and state of preservation of organic content of a rock unit or loose sediments (Batten, 1996). Based on Tyson diagram (1993), four palynofacies have identified for both sections: II: Marginal dysoxic-anoxic basin. IV: Shelf to basin transition. VI: Proximal suboxic-anoxic shelf. IX: Distal suboxic-anoxic basin. According to the quantitative palynological studies of the Tirgan Formation, depositional environment of the formation starts with a shallow, near shore environment and eventually leds to deeper environments (in the terminal shales).
Microfacies characteristics allow interpretations of lateral and vertical shifts in facies zones that reflect major and minor variations in environmental patterns, such as climate, water circulation, and siliciclastic input or sea-level fluctuations (Bachmann et al., 2006). Based on petrographic and washed samples, four lithofacies (A, B, C and D) have been identified in the Tirgan Formation. Petrographic studies were carried out to describe the microfacies and interpret the depositional environments. Therefore, 4 facies associations were identified.
Facies association A: This association is composed of 3 microfacies A1, A2, A3 (Mudstone and Sandy Mudstone). Abundant carbonate mud with quartz grains in this association represent shallowing parts of the basin and indications of the supratidal conditions (Shine, 1983). This facies association has been observed in both sections (Baghak and Gallehvar) and most abundant in the lower parts of the sections.
Facies association B: This facies association includes 3 microfacies B1, B2 and B3 (Peloidal Wackstone, Bioclastic Wackstone and Bioclastic Oolithic Wackstone). Abundant of Peloids in this association show deposition in low energy condition such as lagoon (Adachi et al., 2004). The evidences represent formation of this facies association in a lagoon environment. This association has been observed in both sections but its frequency is in Gallehvar section.
Facies association C: This facies association contains 3 microfacies C1, C2 and C3 (Oolitic grainstone, Biocalstic Oolitic garinstone and Orbitolina Oolitic grainstone). Presence of abundant tangential ooids in this association represent formation in the shallow, warm, agitated and calcium carbonate supersaturated conditions. Generally, ooids are index for sedimentation in shallow turbulent waters (Milliman, 1974). Presence of cross-stratification represents high-energy conditions during the formation of this facies (Bachmann & Hirsch, 2006). Aboundant discoidal and elongated orbitolina in the oolitic grainstone show formation of this facies in the seaward margin of the shoal. Given this evidence, it can be said that high-energy conditions of shoal prevailed in both studied sections.
Facies association D: This facies association is mainly composed of Orbitolina Oolithic Packstone. Due to existance of stenohaline organisms such as Echinoderms, Brachiopods, Briozoers and discoidal Orbitolina, this association have been deposited in an open marine environment. Presence of aboundant mud lime in this association represents low energy conditions (Adachi et al., 2004) and deposition under the normal waves.
The facies model of Tirgan Formation in the studied area can be interpreted as a shallow carbonate platform of ramp type where carbonate rocks have been deposited in four facies belt: tidal flat, lagoon, shoal and open marine. One the reasons that prevented the reef formation is, supply of siliciclastic particles from the land that are seen in some of the facies in both studied sections. The results of the palynofacies study can also support the interpretation of sedimentary facies in these sections.

Keywords: Kopeh Dagh; Tirgan Formation; Lower Cretaceous; Palynomorphs; Foraminifera; sedimentary environments.

Reference
Adachi, N., Ezaki, Y., & Lin, J., 2004. The origins of peloids immediately after the end-permain extinction, Guizhou Province, South China. Sedimentary Geology, 164: 164-178.
Bachmann, M., & Hirsch, F., 2006. Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sea-level change. Cretaceous Research, 27: 487–512.
Batten, D.J., 1996. Palynofacies and paleoenvironmental interpretation. In: Jansonius, J., McGregor, D.C., (Eds.), Palynology: principles and applications. American Association of Stratigraphic Palynologists, Foundation, Dallas, Texas, 3: 1011-1064.
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W. E. (ed.), Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, pp. 108-121.
Milliman, J.D., 1974. Marine Carbonates. Springer-Verlag, Berlin, xv: 1-375.
Oosting A.M., Leereveld H., Dickens G.R., Henderson R.A., & Brinkhuis H., 2006. Correlation of Barremian-Aptian (mid-Cretaceous) dinoflagellate cyst asemblages between the Tethyan and Austral realms. Cretaceous Research, 27: 792-813.
Ruttner, A.W., 1993. Southern borderland of Triassic Laurasia in northeast Iran. Geologische Rundschau, 82: 110-120.
Shine, E.A., 1983. Tidal flat environment. In: Scholle, P.A., Bebout, D.G., & Moore, C.H. (eds.), Carbonate Depositional Environments. American Association of Petroleum Geologists Memoir, 33: 172-210.
Skupien P., & Vašíček Z. 2002. Barremian and Aptian integrated biostratigraphy (ammonites and non-calcareous dinocysts), paleoenvironment and paleoclimate in the deposits of the Silesian nappe in the Czech Republic’s territory (Outer Western Carpathians). Geologica Carpathica, 53: 1-11.
Torricelli S., 2000. Lower Cretaceous dinoflagellate cyst and acritarch stratigraphy of the Cismon APTICORE (Southern Alps, Italy). Review of Palaeobotany and Palynology, 108: 213-266.
Traverse A., 1988. Paleopalynology. Unwin Hyman, Boston, 600 p.

Keywords


آقانباتی، ع.، 1383. زمین شناسی ایران. سازمان زمین شناسی و اکتشافات معدنی کشور، 586 ص.
افشارحرب، ع.، 1373. زمین شناسی ایران: زمین شناسی کپه‌داغ. سازمان زمین شناسی و اکتشافات معدنی کشور، 276 ص.
باقرنژاد، س.، محبوبی، ا.، محمودی قرایی. م. ح.، خانه ‌باد، م.، 1392. رخساره‌ها و چینه نگاری سکانسی سازند تیرگان در برشهای آبگرم و سیرزار در شمال شرق حوضه رسوبی کپه داغ. دیرینه شناسی، 1 (1): 1- 18.
جلالی، ع.، 1386. بایواستراتیگرافی و لیتواستراتیگرافی سازند تیرگان در کپه داغ خاوری و باختری. پایان‌نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد تهران شمال، 215 ص.
جوانبخت، م.، 1390. تاریخچه رسوب‌گذاری و پس از رسوب‌گذاری سازند تیرگان در نواحی مرکزی و غربی حوضه رسوبی کپه‌داغ. رساله دکتری، دانشگاه آزاد اسلامی واحد شمال تهران، 263 ص.
خدائی، م. ع.، 1370. مطالعه رخساره‌های رسوبی و محیط رسوبی سازند تیرگان واقع در شمال شرق ایران. پایان‌نامه کارشناسی ارشد، دانشگاه تربیت معلم، 195 ص.
داوطلب، ا.، قاسمی نژاد، ا.، وحیدی نیا، م.، عاشوری، ع.، ذبیحی، ف.، 1393. زیست چینه نگاری سازند تیرگان براساس پالینومورفها و روزن داران کف زی در شرق حوضه کپه داغ. هشتمین همایش انجمن دیرینه شناسی ایران، صص 44-48.
ریوندی، ب.، 1386. چینه نگاری سکانسی سازند های تیرگان و سرچشمه در ناودیس خور واقع در شمال شرق مشهد. پایان نامه کارشناسی ارشد، دانشگا فردوسی مشهد، 175 ص.
ریوندی، ب.، نجفی، م.، موسوی حرمی، ر.، محبوبی، ا.، وحیدی‌نیا، م.، 1389. چینه نگاری زیستی سازند تیرگان در دو ناحیه جوزک و چمن بید واقع در غرب حوضه رسوبی کپه داغ. پژوهشهای چینه نگاری و رسوب شناسی دانشگاه اصفهان، 41 (4): 89-110.
سبیل، ف.، 1375. بررسی میکرواستراتیگرافی کرتاسه زیرین در بخشی از کپه داغ (جنوب شرقی و شمال قوچان). پایان‌نامه کارشناسی ارشد، دانشگاه شهید بهشتی، 125 ص.
طاهرپورخلیل آباد، م.، 1387. بررسی میکروپالئونتولوژی و میکروفاسیس سازند تیرگان در برش ارکان، جنوب ‌باختری بجنورد و مقایسه آن با رخساره اورگونین در اروپا. پایان‌نامه کارشناسی ارشد، دانشگاه آزاد اسلامی مشهد،‌ 252 ص.
کباری، ر.، 1387. تفسیر تاریخچه رسوب‌گذاری و پس از رسوب‌گذاری و چینه نگاری سکانسی سازند تیرگان در بخش مرکزی حوضه رسوبی کپه داغ (منطقه چناران). پایان‌نامه کارشناسی ارشد، دانشگاه فردوسی مشهد، 214 ص.
لاسمی، ی.، 1379. رخساره‌ها، محیط رسوبی و چینه نگاری سکانسی نهشته سنگهای پرکامبرین بالایی و پالئوزوئیک ایران. سازمان زمین شناسی و اکتشافات معدنی کشور، 180 ص.
محمدی، م.، 1392. چینه نگاری سکانسی سازندهای تیرگان در ناحیه بزنگان. پایان‌نامه کارشناسی ارشد، دانشگاه فردوسی مشهد، 84 ص.
موسوی زاده، م. ع.، 1386. تاریخچه رسوب‌گذاری و پس از رسوب‌گذاری سازند تیرگان در غرب روستاهای چمن بید و جوزک. پایان‌نامه کارشناسی ارشد، دانشگاه فردوسی مشهد، 158 ص.
موسوی زاده، م. ع.، محبوبی، ا.، موسوی حرمی، ر.، نجفی، م.، 1387. رخساره‌های رسوبی و چینه نگاری سکانسی سازند تیرگان در برشهای جوزک و چمن بید واقع در غرب حوضه رسوبی کپه‌داغ و انطباق با نواحی شرق حوضه. پژوهشهای چینه‌نگاری و رسوب شناسی دانشگاه اصفهان، 32 (3): 34- 56.
موسوی حرمی، ر.، خاوری خراسانی، پ.، 1384. تفسیر تغییر سطح دریا از نگاشت رسوبی. واژگان خرد، 427 ص.
هاشمیان کاخکی، ن.، 1385. تحول زمین شناسی و بررسی چینه شناسی و میکروفاسیس اورگونین سازند تیرگان در حوضه کپه‌داغ. پایان‌نامه کارشناسی ارشد، دانشگاه آزاد اسلامی مشهد، 149ص.
Adachi, N., Ezaki, Y., & Lin, J., 2004. The origins of peloids immediately after the end-permain extinction, Guizhou Province, South China. Sedimentary Geology, 164: 164-178.
Afshar-Harb, A., 1969. A brief history of geological exploration and geology of Sarakhs area and Khangiran gas field (in Persian). Bulletin of Iranian Petroleum Institute, 37: 86-96.
Afshar-Harb, A., 1982. Geological Map of Dareh-Gaz, 1:250000 scale. Geological Survey & Mineral Exploration of Iran.
Al-Saad, H., & Ibrahim, M., I.A., 2005. Facies and palynofacies characteristica of the upper Jurassic Arab D reservoir in Qatar, Revue de Paleobiologie, 24 (1): 225-241.
Bachmann, M., & Hirsch, F., 2006. Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sea-level change. Cretaceous Research, 27: 487-512.
Dunham, R.J., 1962, Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (ed.), Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, pp 108-121.
Flugel, E., 2010. Microfacies of carbonate Rocks Analysis Interpretation and Application. Springer-Verlag, 976 p.
Hariri, T.Y., 2008. Depositional Environment and petrophysical studies on subsurface Devonian Sediments from Faghur-1x well at North Western Desert, Egypt. Journal of Applied Sciences Research, 4 (1): 65-75.
Heckle, P.H., 1972. Possible inorganic origin for stromatactis in calcilutite mounds in the Tully Limestone, Devonian of New York. Journal of Sedimentary Petrology, 42: P. 7-18.
James, N.P., Collins, L.B., Bone, Y., & Hallock, P., 1999. Rottnest Shelf to Ningaloo Reef cool-water to warm-water carbonate transition on the Continental Shelf of Western Australia. Journal Sedimentary Research, 69: 1297-1321.
Jaramillo, C.A., 2006, Cenozoic plant diversity in the Neotropics. Science, 311: 1893-1896.
Kalantari, A., 1969. Foraminifera from the middle Jurassic-Cretaceous successions of Kopet Dagh region (NE-Iran). National Iranian Oil Company, (N.I.O.C.), Exploration and Production, Geological Laboratory, Tehran, (Ph.D. thesis, London University), Publication 3: 1-298.
Lasemi, Y., 1995. Platform carbonate of Upper Jurassic Mozduran Formation in the Kopet-Dagh basin, NE Iran, facies, paleoenvironments and sequences. Sedimentary Geology, 99: 151-164.
Leereveld, H., 1995. Dinoflagellate cysts from the Lower Cretaceous Rio Argos succession (SE Spain). PhD thesis, Laboratory of Palaeobotany and Palynology, Utrecht University, 175 p.
Mass, J.P., Fenerci, M., & Pernarcic, E., 2003. Palaebathymetric reconstruction of peritidal arbonates, Late Barremian, Urgonian, Sequences of Provence (SE France). Palaeogeography, Palaeclimatology, Palaeoecology, 200: 65-81.
Milliman, J.D., 1974. Marine Carbonates. Springer-Verlag, Berlin, xv: 1-375.
Oosting A.M., Leereveld H., Dickens G.R., Henderson R.A., & Brinkhuis H., 2006. Correlation of Barremian-Aptian (mid-Cretaceous) dinoflagellate cyst asemblages between the Tethyan and Austral realms. Cretaceous Research, 27: 792-813.
Pittet, B., van Buchem, F.S.P., Hillgartner, H., Razin, P., Grotsch, J., & Droste, H., 2002. Ecological succession, palaeoenvironmental change, and depositional sequences of Barremian-Aptian shallow-water carbonates in northern Oman. Sedimentology, 49: 555-581.
Rahaghi, A., 1976. Contribution a l'É tude de quelques grands foraminifères de l'Iran. Societe National Iranienne des Petroles Laboratoire de Micropaleontologie, 6: 1-79.
Reeder, S.L, & Rankey, E.C., 2008. Interactions between tidal flows and oolite shoals, Northern Bahamas. Journal Sedimentary Research, 78: 175-186.
Ruttner, A.W., 1993. Southern borderland of Triassic Laurasia in northeast Iran. Geologische Rundschau, 82: 110-120.
Schroeder, R., van Buchem, F.S.P., Cherchi, A., Baghbani, D., & Vincent, B., 2010. Revised orbitolinid biostratigraphic zonation for the Barremian-Aptian of the eastern Arabian Plate and implications for regional stratigraphic correlations. GeoArabia Special Publication, 4(1): 49-96.
Shine, E.A., 1983. Tidal flat environment. In: Scholle, P.A., Bebout, D.G., & Moore, C.H. (eds.), Carbonate Depositional Environments. American Association of Petroleum Geologists Memoir, 33: 172-210.
Simmons, M.D., Whittaker, J.E., & Jones, R.W., 2000. Orbitolinids from Cretaceous sediments of the Middle East-a revision of the F.R.S. Henson and Associated Collection. In: Hart, M.B., Kaminski, M.A., & Smart, C.W., (eds.), Proceedings of the Fifth International Workshop on Agglutinated Foraminifera, Grzybowski Foundation, Special Publication, 7: 411- 437.
Skupien P., & Vašiček Z. 2002. Barremian and Aptian integrated biostratigraphy (ammonites and non-calcareous dinocysts), paleoenvironment and paleoclimate in the deposits of the Silesian nappe in the Czech Republic’s territory (Outer Western Carpathians). Geologica Carpathica, 53: 1-11.
Taherpour Khalil Abad, M., Conrad, M.A., Aryaei, A.A., & Ashouri, A.R. 2010. Barremian-Aptian dasycladalean algae, new and revisited, from the Tirgan Formation in the Kopet Dagh, NE Iran. Carnets de Geologie - Notebooks on Geology, Art 2010/05 (CG2010_A05): 1-13.
Taherpour Khalilabad M., Aryaei A.A., Ashouri A.R., & Ghaderi A., 2011. Introducing some echinoderms from the Tirgan Formation, Kopeh-Dagh Basin, NE of Iran. Geopersia, 1 (1): 83-94
Taherpour Khalil Abad, M., Schlagintweit F., Vaziri S.H., Aryaei A.A., & Ashouri A.R., 2013. Balkhania balkhanica Mamontova, 1966 (benthic foraminifera) and Kopetdagaria sphaerica Maslov, 1960 (dasycladalean alga) from the Lower Cretaceous Tirgan Formation of the Kopet-Dagh mountain range (NE Iran) and their paleobiogeographic significance. Facies, 59: 267-285
Torricelli S., 2000. Lower Cretaceous dinoflagellate cyst and acritarch stratigraphy of the Cismon APTICORE (Southern Alps, Italy). Review of Palaeobotany and Palynology, 108: 213-266.
Traverse A., 1988. Paleopalynology. Unwin Hyman, Boston, 600 p.
Tucker, M.E., 2001, Sedimentary Petrology (3rd edition). Blackwell, Oxford, 260 p.
Tucker, M.E., & Wright, V.P., 1990. Carbonate Sedimentology. Black-Wells, Oxford, 482 p.
Tyson R., 1993. Palynofacies analysis. Applied Micropaleontology, pp. 153-191.
Van der Zwan, C.J. 1990. Palynostratigraphy and palynofacies reconstruction of the Draugen Field Offshore Mid Norway. Review of Paleobotany and Palynology, 62: 157-186.
Wilson, J.L., 1975. Carbonate Facies in Geological History. Springer- Verlag, 471p.
CAPTCHA Image