Study of concretion development in shale-dominated horizons of Kashafrud Formation, and its application in sequence stratigraphic investigations, Qara Gheitan Section, Kopet-Dagh.

Document Type : مقالات پژوهشی

Authors

Departement of Geology, College of Science, University of Tehran, Iran

Abstract

The lower parts of Kashafrud Formation in Qara Gheitan Section is dominated by shale and fine siliciclastic facies, where carbonate concretions and thin bedded of sandstones are found useful indicators for environmental analysis. Sedimentological characteristics of the shale and their abundance as well as Helminthopsis trace fossil content indicate that they may have formed under deep marine conditions, where interpretation of relative sea-level change for deeper parts of the basin is rather complicated. Carbonate concretions in this formation are found eodiagenetic on the basis of their calcite content (radial calcimetry), morphology (spherical), and stratigraphic position (parallel to bedding). Detrital calcite, quartz and feldspar found in the concretions are similar to the hosting shales. The hosting shale is marked by abundant illite, kaolinite, and cholorite. The concretions are thought to be developed soon after deposition of sediment, in high stand period, during which no/minor sediments where derived from the land. Interaction of sea water with newly deposited sediments led to the enrichment of some parts by calcite (concretions). Hence, the concretion rich horizons are good indicators for determination of high-stand period (mfs), therefore the sandy sheets within the shaly horizons, turbidites, indicate the low-stand period in the basin, during which sediment supply from the land was significant.

Keywords


آقانباتی،‌ ع.،‌ 1383. زمین‌شناسی ایران. انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور،‌ 586 ص.
افشارحرب، ‌ع.،‌ 1373. ‌زمین‌شناسی کپه‌داغ. انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور،‌ 276 ص.
پورسلطانی، م.ر.، موسوی حرمی، ر.، لاسمی، ی.، 1385. شناخت مجموعه‌های رخساره‌ای سازند کشف‌رود (ژوراسیک میانی) و تفسیر محیط رسوبی آن. چکیده مقالات دهمین همایش انجمن زمین‌شناسی ایران، 248 ص.
پورسلطانی، م.ر.، 1386. پترولوژی، دیاژنز، تاریخچه رسوب گذاری و چینه‌نگاری سکانسی سازند کشف‌رود (باژوسین فوقانی، باتونین زیرین) در شرق حوضه کپه‌داغ. رساله دکتری زمین‌شناسی، گرایش رسوب‌شناسی و سنگ‌شناسی رسوبی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، 366 ص.
حسین پورصیامی،‌ ح.،‌ 1382. ارزیابی توان هیدروکربور‌زایی سازند کشف‌رود در تاقدیس خانگیران با استفاده از روش . دانشکده فنی دانشگاه تهران، نشریه شماره 4، 381-37:373.
کرامتی، م.، 1375. تشخیص طبقات سنگ منشأ هیدروکربورزایی سازند کشف‌رود با استفاده از داده‌های نمودارهای ژئوفیزیکی درون چاهی. تحقیق، سال 6، 66-21:56.
Adabi, M.H., & Ager, D.V., 1997. Late Jurassic brachiopods from northeast Iran. Paleontology, 40:355-362.
Astin, T.R., & Scotchman, I.C., 1988. The diagenetic history of some septarian concretions from the Kimmeridge Clay, England. In: Hounslow, M.W., Significance of localized pore pressures to the genesis of septarian concretions. Sedimentology, 44: 1133-1147.
Bromley, R.G., & Ekdale, A.A., 2006. Composite ichnofabrics and tiering of burrows. In: Catuneanu, O., Principles of sequence stratigraphy. Elsevier, 375 p.
Carver, R.E., 1971. Procedures in sedimentary petrology. John Wiley and Sons, 653 p.
Catuneanu, O., 2006. Principles of sequence stratigraphy. Elsevier, 375 p.
Coe, A.L., & Church, K.D., 2003. Sequence stratigraphy. In: Coe, A.L. (eds.), The sedimentary record of sea-level change. Cambridge University Press, 57-98.
Curtis, C.D., Coleman, M.L., & Love, L.G., 1986. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions. In: Sik Woo, K., & Khim, B.K., Stable oxygen and carbon isotopes of carbonate concretions of the Miocene Yeonil Group in the Pohang Basin, Korea: Types of concretions and formation condition. Sedimentary Geology, 183:15-30.
Friedman, G.M., & Sanders, J.E., 1978. Principles of sedimentology. John Wiley & Sons, 792 p.
Herbert, C.T., & Compton, J.S., 2007. Depositional environments of the lower Permian Dwyka diamictite and Prince Albert shale inferred from the geochemistry of early diagenetic concretions, southwest Karoo Basin, South Africa. Sedimentary Geology, 194:263-277.
Hounslow, M.W., 1997. Significance of localized pore pressures to the genesis of septarian concretions. Sedimentology, 44:1133-1147.
Irwin, H., Curtis, C., & Coleman, M., 1977. Isotopic evidence for the source of diagenetic carbonate during burial of organic-rich sediments. In: Sik Woo, K. & Khim, B.K., Stable oxygen and carbon isotopes of carbonate concretions of the Miocene Yeonil Group in the Pohang Basin, Korea: Types of concretions and formation condition. Sedimentary Geology, 183:15-30.
Kantorowicz, J.D., 1985. The petrology and diagenesis of Middle Jurassic clastic sediments, Ravenscar Group, Yorkshire. In: Burley, S.D. & Worden, R.H. (eds.) Sandstone diagenesis: Recent and ancient. Blackwell Publishing, 649 p.
Lash, G.G., & Blood, D.R., 2007. Origin of early overpressure in the Upper Devonian Catskill Delta Complex, western New York state. Basin Research, 19:51-66.
Lyberis, N., & Manby, G., 1999. Oblique to orthogonal convergence across the Turan Block in the Post-Miocene. In: Poursoltani, M.R., Moussavi-Harami, R. & Gibling, M.R., Jurassic deep-water fans in the Neo-Tethys Ocean: the Kashafrud Formation of the Kopet-Dagh Basin, Iran. Sedimentary Geology, 198:53-74.
Madani, M., 1977. A study of the sedimentology, stratigraphy and regional geology of the Jurassic rocks of eastern Kopet-Dagh (NE Iran). Unpublished Ph.D. thesis, Royal School of Mines, Imperial College, London, 246 p.
Mason, B., & Moore, C.B., 1982. Principles of geochemistry. John Wiley & Sons, 344 p.
Morad, S., & Eshete, M., 1990. Petrology, chemistry and diagenesis of calcite concretions in Silurian shales from central Sweden. In: Hounslow, M.W., Significance of localized pore pressures to the genesis of septarian concretions. Sedimentology, 44:1133-1147.
Morad, S., Ketzer, J.M., & De Ros, L.F., 2000. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology, 47:95-120.
Mozley, P.S., 1996. The internal structure of carbonate concretions in mudrocks: a critical evaluation of the conventional concentric model of concretion growth. In: Sik Woo, K., & Khim, B.K., Stable oxygen and carbon isotopes of carbonate concretions of the Miocene Yeonil Group in the Pohang Basin, Korea: Types of concretions and formation condition. Sedimentary Geology. 183:15-30.
Nelson C.S., & Lawrence, M.F., 1984. Methane-derived high-Mg calcite submarine cement in Holocene nodules from the Fraser Delta. In: Sik Woo, K., & Khim, B.K., Stable oxygen and carbon isotopes of carbonate concretions of the Miocene Yeonil Group in the Pohang Basin, Korea: Types of concretions and formation condition. Sedimentary Geology, 183:15-30.
Pemberton, S.G., Spila, M., Pulham, A.J., Saunders, T., MacEachern, J.A., Robbins, D., & Sinclair, I.K., 2006. Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon reservoirs, Jeanne d'Arc Basin. In: Catuneanu, O., Principles of Sequence Stratigraphy. Elsevier, 375 p.
Pratt, B.R., 2001. Septarian concretions: Internal cracking caused by synsedimentary earthquakes. Sedimentology, 48:189-213.
Poursoltani, M.R., & Gilbling, R.M., 2006. The Kashafrud Formation of Iran: The Jurassic turbidities in the Neotethys Ocean, and reservoir evolution. The Atlantic Geoscience Society, 32nd Colloquium & Annual Meeting, Canada, Abstracts, p.61.
Raiswell, R., 1971. The growth of Cambrian and Liassic concretions. In: Sik Woo, K., & Khim, B.K., Stable oxygen and carbon isotopes of carbonate concretions of the Miocene Yeonil Group in the Pohang Basin, Korea: Types of concretions and formation condition. Sedimentary Geology, 183:15-30.
Raiswell, R., 1987. Non-steady state microbial diagenesis and the origin of concretions and nodular limestone. In: Hounslow, M.W., Significance of localized pore pressures to the genesis of septarian concretions. Sedimentology, 44: 1133-1147.
Raiswell, R., & Fisher, Q.J., 2000. Mudrock-hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition. In: Sik Woo, K., & Khim, B.K., Stable oxygen and carbon isotopes of carbonate concretions of the Miocene Yeonil Group in the Pohang Basin, Korea: Types of concretions and formation condition. Sedimentary Geology, 183:15-30.
Seilacher, A., 2001. Concretion morphologies reflecting diagenetic and epigenetic pathways. Sedimentary Geology, 143:41-57.
Sik Woo, K., & Khim, B.K., 2006. Stable oxygen and carbon isotopes of carbonate concretions of the Miocene Yeonil Group in the Pohang Basin, Korea: Types of concretions and formation condition. Sedimentary Geology, 183:15-30.
‌Tucker, M.E., 2003, Sedimentary rocks in the field (third edition). Wiley, 234 p.
Wickens, H.D., & Bouma, A.H., 2000. The Tanqua fan complex, Karoo Basin, South Africa-outcrop analog for fine-grained, deepwater deposits. In: Bouma, A.H., and Stone, C.G., (eds.) Fine-grained turbidite systems. AAPG Memoir 72/SEPM Special Publication, 68:153-164.
Worden, H.R., & Morad, S., 2003. Clay mineral in sandstones: Controls on formation, distribution and evolution. In: Worden, H.R., & Morad, S., (eds.), Clay mineral cements in sandstones. Blackwell Publishing, 1-44.
CAPTCHA Image