Investigating of Samalqan aquifer groundwater quality base on underground variations of alluvial and rock facies

Document Type : مقالات پژوهشی

Authors

1 Ferdowsi University Of Mashhad

2 Industrial University of Shahroud

3 -

Abstract

Introduction
Generally, the groundwater chemistry depends on many factors, including the quality of the recharged water, the hydrogeological‏ conditions, water-rock interactions‏, human activities etc‏ (Kumar et al., 2012). According to these processes, the chemical composition of groundwater varies with respect to space and time and the concentrations of chemical species increase in groundwater flow path (Sharif et al., 2007; Suma et al., 2014;  Rattan et al., 2005)‏. The water-rock interaction and the types of chemical reactions (dissolution, precipitation, ion exchange processes, redox etc.), which effected on groundwater quality, usually is determined in the discharge point. Based on chemical composition, the quality of groundwater‏ is classified to drinking, industrial, and agricultural categories (Elgano and Kannan, 2007, Subramani et al., 2005). Assessing the quality of groundwater and surface water resources, especially in areas related to groundwater for drinking, is very important. Rocky and alluvial facies have different effects on the quality of water resources (Clark, 2015). Sedimentary rocks and minerals, especially minerals in evaporite formations‏ damage the water quality (Jagadeshan et al., 201; Ozman et al., 2011; Redwan et al., 2016; Choi et al., 2013). The most important aim of this paper is to investigate the subsurface alluvial deposits and geological formations (rocky and alluvial facies) and their effect on the chemical characteristics of water and the water quality for various uses (drinking, agriculture, and industry) in Samalqan plain.
Materials and Methods
The collected drilling‏ data of 15 exploitation wells from North Khorasan Regional Water Company, has been used for the purposes of this study. Sampling from deep wells in different parts of the plains has been done to assess the water quality in both wet and dry seasons in Year 1392-93. Arc GIS (10.1), PHREEQC 2.6, Aq.QA, Excel, and RockWorks14 software's were used to generate required maps and diagrams.
Discussion
Using the available‏ drilling logs information in both AA' and BB' directions, the geological layers of sediments were investigated in the Samalqan plain. Based on dfistribution of coarse sediments in the North East of the plain (in AA' cross section), the water table depth increases from the northeast to the southwest. As drilling logs show, the geological facies changes in this direction and it shift from gravel in the southwest to muddy and sandy in central part of the plain and finally to gravelly in the northeastern parts of the plain. In BB' trend, along the east - west and north of the plain, the Tirgan Formation facies and the Neogene sediments have an important role in the quality of water resources. The drilling logs in this direction indicate that the gravelly sandy and muddy facies is visible and it changes from muddy to sandy and gravely from East to West. Due to the proximity to facies changing to the limestone of Tirgan Formation, the electrical conductivity (EC) of water shows minimum values in the southern part of the plain. The abundance of cations and anions facies are like Na+ >Mg2+ > Ca2+>K+‏ ‏ and Cl- > HCO3- >SO42-, respectively. According to the Pie chart in both dry and wet seasons, the concentration of bicarbonate is reduced however, the concentrations of sodium, chloride, and sulfate are increase from south to the north of the plain, which is due to the existence of Neogene sediments in the eastern part of the plain and to the lack of aquifer recharge from northern part of the plain. The groundwater equipotential map show that the direction of groundwater flow is toward northern (the output of the catchment) and the type of‏ groundwater changes from bicarbonate to chlorine in this direction. Saturation indexes of minerals indicate more dissolution of halite and gypsum with respect to‏ calcite and dolomite in Samalqan plain. Samalqan water resources have good to unpleasant quality for drinking, and its water is appropriate to un- appropriate in terms of agricultural usages and it is corrosive sedimentational in industry point of view.
Acknowledgement
We need to appreciate the efforts of Dr. Mohammad Vahidinia, Dr. Asadullah Mahbuobi and Dr. Mohammad Khanehbad, from Ferdowsi University of Mashhad, Mr. Davarpanah, head of Ashkhane water affairs, Mr Karimi, head of Ashkhaneh water affairs archives, Mrs. Bakhshabadi, secretary of water resources studies of North Khorasan Regional Water, Mr. Bahrami and Mr. Moniri, East Abkav company, Mr. Abyari, digger of Yazd Abgune company. As well as we thanks the efforts of Mr. Moheghi, Mr. Sohrabi, Mr. Asemani,Mr. Eskandari, Mr. Shadmehr, Mrs Zandvakili and Mrs Valizadeh.
Keywords: Alluvium facies; Underground investigation; Samalqan; Gibbs plot; Saturation Index; Composition diagram.
References
Choi, B.Y., Yun, S.T., Kim, K.H., & Choh, S.J., 2013. Geologically controlled agricultural contamination and water–rock interaction in an alluvial aquifer: results from a hydrochemical study. Environmental Earth Sciences, 68: 203-217.
Clark, I. 2015. Groundwater Geochemistry and Isotopes. CRC Press, Florida, 456 p.
Elgano, L., & Kannan, R., 2007. Rock–water interaction and its control on chemical composition of groundwater. In: Sarkar, D., Datta, R., Hannigan, R., (eds.), Developments in environmental science, 5 (Chapter 11): 229–243.
Jagadeshan, G., Kalpana, L., & Elango, L., 2014. Hydrogeochemistry of high fluoride groundwater- in hard rock aquifer in a part of Dharmapuri District, Tamil Nadu, and India. Geochemistry International,  53: 554564    
Kumar, S.K., Chandrasekar, N., Seralathan, P., Godson, P.S., & Magesh, N.S., 2012. Hydrogeochemical study of shallow carbonate aquifers, Rameswaram Island, India. Environmental Monitoring and Assessment, 184: 4127-4138.
Özmen, Ö., Koç, S., & Celik, M., 2011. Evaluation of Groundwater Quality and Contamination around Fluorite Mineralization, Kaman Region, Central Anatolia, Turkey. Geochemistry International, 2011, 49: 76–89.
Rattan, R.K., Datta, S.P., Chhonkar, P.K., Suribabu, K., & Singh, A.K., 2005. Longterm impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater a case study. Agriculture, Ecosystems & Environment, 109: 310-322.
Redwan, M., Abdel Moneim, A., & Abo Amra, M., 2016. Effect of water–rock interaction-processes on the hydrogeochemistry of groundwater west of Sohag area, Egypt. Arabian Journal of Geosciences, 9: 111.
Sharif, M.U., Davis, R.K., Steele, K.F., Kim, B., Kresse, T.M., & Fazio, J.A., 2007. Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA). Journal of Hydrology, 350: 41–55.
Subramani, T., Elango, L., & Damodarasamy, S.R., 2005. Groundwater quality and its suitability for drinking and agricultural use Chithar River Basin, Tamil Nadu, India. Environmental Geology, 47: 1099-1110.
Suma, C.S., Srinivasamoorthy, K., Saravanan, K., Faizalkhan, A., Prakash, R., & Gopinath, S., 2014. Geochemical modeling of groundwater in Chinnar River basin: a source identification perspective. Aquatic Procedia, 4: 986-992.

Keywords


افشار حرب، ع.، ۱۳۷۳. زمین‌شناسی ایران: زمین‌شناسی کپه‌داغ. سازمان زمین‌شناسی و اکتشافات معدنی کشور، 275 ص.
سهیلی، م.، 1364. نقشه زمین‌شناسی کوه کورخود، مقیاس 1:250000. سازمان زمین‌شناسی و اکتشافات معدنی کشور.
علیزاده، الف.، ۱۳۷۸. اصول هیدرولوژی کاربردی، چاپ بیست و هشتم. انتشارات آستان قدس رضوی، ۹۴۶ ص.
قاسمی، ع.، لشگری‌پور، غ.ر.، حسنکی، م.ج.، نعمت اللهی، م.ج.، ۱۳۹۲. ارزیابی تأثیر سازندهای زمین‌شناسی بر کیفیّت منابع آب حوضه آبریز شورلق سرخس در استان خراسان رضوی. هشتمین همایش انجمن زمین‌شناسی مهندسی و محیط زیست ایران، دانشگاه فردوسی مشهد، صص 1406-1416.
محمدی بهزاد، ح.ر.، رحمانی، ر.، کلانتری، ن.، چیت‌سازان، م. روحی، ح.، ۱۳۸۹. بررسی فرآیندهای اثرگذار بر کیفیّت آب زیرزمینی دشت گتوند عقیلی. نخستین کنفرانس ملی پژوهش‌های کاربردی منابع آب ایران، دانشگاه صنعتی کرمانشاه، صص 173 تا 184.
محمدزاده.، ح.، ۱۳۷۹. بررسی عوامل طبیعی مؤثر در کاهش کیفیت آب‌های زیرزمینی (بررسی موردی علل شوری آب‌های زیرزمینی دشت‌های کربال، گرگان و بیرجند). پنجمین کنفرانس بین‌المللی عمران.
محمدزاده، ح.، کاظمی گلیان، ر. 1395. بهره برداری آب زیرزمینی آبخوان سازندی در مسیر گسل آب بر (KNW93181). وزارت نیرو، شرکت آب منطقه‌ای خراسان شمالی.
شرکت مهندسین مشاور سیمای آب خاوران. 1394. پروژه مطالعات شناسایی سازند سخت و کارست محدوده مطالعاتی سملقان (جلد دوم). خراسان شمالی، سازمان آب منطقه‌ای.
Banoeng-Yakubo, B., Yidana, S.M., Emmanuel, N., Akabzaa, T., & Asiedu, D., 2009. Analysis of -groundwater quality using water quality index and conventional graphical methods: the Volta region, Ghana. Environmental Earth Sciences, 59: 867–879.
Choi, B.Y., Yun, S.T., Kim, K.H., & Choh, S.J., 2013. Geologically controlled agricultural contamination and water–rock interaction in an alluvial aquifer: results from a hydrochemical study. Environmental Earth Sciences, 68: 203-217.
Clark, I. 2015. Groundwater Geochemistry and Isotopes. CRC Press, Florida, 456 p.
Elgano, L., & Kannan, R., 2007. Rock–water interaction and its control on chemical composition of groundwater. In: Sarkar, D., Datta, R., Hannigan, R., (eds.), Developments in environmental science, 5 (Chapter 11): 229–243.
Hosono, T., Ikawa, R., Shimada, J., Nakano, T., Saito, M., Onodera, S., Lee, K., & Taniguchi, M., 2009. Human impacts on groundwater flow and contamination deduced by multiple isotopes in Seoul City, South Korea. Science of The Total Environment, 407: 3189 –3197.
Jagadeshan, G., Kalpana, L., & Elango, L., 2014. Hydrogeochemistry of high fluoride groundwater- in hard rock aquifer in a part of Dharmapuri District, Tamil Nadu, and India. Geochemistry International, 53: 554564
Jalali, M., 2007. Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in the Chah Basin in Western Iran. Environmental Monitoring and Assessment, 130: 347–364.
Kumar, S.K., Chandrasekar, N., Seralathan, P., Godson, P.S., & Magesh, N.S., 2012. Hydrogeochemical study of shallow carbonate aquifers, Rameswaram Island, India. Environmental Monitoring and Assessment, 184: 4127-4138.
Marie, A., & Vengosh, A., 2001. Sources of salinity in ground water from Jericho area, Jordan Valley. Ground Water, 39: 240-248.
Montoroi, J.P.O., Grunberger, O., & Nasri, S., 2002. Groundwater geochemistry of a small reservoir catchment in Central Tunisia. Applied Geochemistry, 17: 1047-1060.
Nagarajan, R., Rajmohan, N., Mahendran, U., & Senthamilkumar, S., 2010. Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city,Tamil Nadu, India. Environmental Monitoring and Assessment, 171: 289-308.
Özmen, Ö., Koç, S., & Celik, M., 2011. Evaluation of Groundwater Quality and Contamination around Fluorite Mineralization, Kaman Region, Central Anatolia, Turkey. Geochemistry International, 2011, 49: 76–89.
Rattan, R.K., Datta, S.P., Chhonkar, P.K., Suribabu, K., & Singh, A.K., 2005. Longterm impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater a case study. Agriculture, Ecosystems & Environment, 109: 310-322.
Ravinkumar, P., Venkatesharaju, K., Prakash, K.L., & Somashekar, R.K., 2010. Geochemistry of groundwater and groundwater prospects evaluation, Anekal Taluk, Bangalore Urban District, Karnataka, India. Springer Science. Environmental Monitoring and Assessment, 179: 93-112.
Redwan, M., Abdel Moneim, A., & Abo Amra, M., 2016. Effect of water–rock interaction-processes on the hydrogeochemistry of groundwater west of Sohag area, Egypt. Arabian Journal of Geosciences, 9: 111.
Rouabhia, A., Fehdi, Ch., Baali, F., Djabri, L., & Rouabhi, R., 2009. Impact of human activities on quality and geochemistry of groundwater in the Merdja area, Tebessa, Algeria. Environmental Geology, 56:1259–1268.
Saravanan, K., Srinivasamoorthy, K., Gopinath, S., Prakash, R., & Suma, C.S., 2016. Investigation of hydrogeochemical processes and groundwater quality in Upper Vellar sub-basin Tamilnadu, India. Arabian Journal of Geosciences, 9: 372.
Sasamoto, H., Yui, M., & Arthur, R.C., 2004. Hydrochemical characteristics and groundwater evolution modeling in sedimentary rocks of the Tono mine, Japan. Physics and Chemistry of the Earth, 29: 43-54.
Sen, Z., 2015. Practical and applied hydrogeology. Elsevier, Istanbul, 424 p.
Sharif, M.U., Davis, R.K., Steele, K.F., Kim, B., Kresse, T.M., & Fazio, J.A., 2007. Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA). Journal of Hydrology, 350: 41–55.
Subramani, T., Elango, L., & Damodarasamy, S.R., 2005. Groundwater quality and its suitability for drinking and agricultural use Chithar River Basin, Tamil Nadu, India. Environmental Geology, 47: 1099-1110.
Suma, C.S., Srinivasamoorthy, K., Saravanan, K., Faizalkhan, A., Prakash, R., & Gopinath, S., 2014. Geochemical modeling of groundwater in Chinnar River basin: a source identification perspective. Aquatic Procedia, 4: 986-992.
Van der Weijden, A., Fernando, A.L., & Pacheco, B., 2003. Hydrochemistry, weathering and weathering rates on Madeira Island. Journal of Hydrology, 283: 122-145.
CAPTCHA Image